Influence of inoculum type (ileal, caecal and faecal) on the in vitro fermentation of different sources of carbohydrates in rabbits

Authors

  • Rodrigo Abad-Guzmán Universidad Politécnica de Madrid Universidad Nacional de Loja
  • Jose Antonio Larrea-Dávalos Universidad Politécnica de Madrid
  • Rosa Carabaño Universidad Politécnica de Madrid
  • Javier García Universidad Politécnica de Madrid
  • Maria Dolores Carro Universidad Politecnica de Madrid https://orcid.org/0000-0002-4221-9057

DOI:

https://doi.org/10.4995/wrs.2018.9726

Keywords:

In vitro, gas production, sugar beet pulp, pectin, wheat straw, starch, rabbit

Abstract

Two in vitro experiments were performed to analyse the fermentative potential of ileal content, caecal content, soft faeces and hard faeces from adult rabbits. Experiment 1 evaluated 3 doses (0.5, 1.0 and 2.0 g fresh digesta/g substrate dry matter [DM]) of ileal and caecal digesta as inoculum in 28 h-incubations. Two ileal and 2 caecal inocula were obtained, each by pooling the ileal or caecal digesta of 2 adult rabbits. Pectin from sugar beet pulp (SBP) and the insoluble residue obtained after a 2-step in vitro pre-digestion of SBP and wheat straw were used as substrates. The 0.5 dose produced the lowest (P<0.05) amount of gas at 28 h, with no differences (P>0.05) between the 1.0 and 2.0 doses (44.9, 51.6 and 53.8 mL/g substrate DM, respectively; values averaged across inocula and substrates). Experiment 2 evaluated two doses of ileal inoculum (1 and 1.5 g fresh digesta/g substrate DM) and compared ileal digesta, caecal digesta, soft faeces and hard faeces as inoculum for determining in vitro gas production (144-h incubations) of the 3 substrates used in Experiment 1 and wheat starch. Three inocula of each type were obtained, each by pooling either digesta or faeces from 3 rabbits. There were no differences (P>0.05) between the 2 ileal doses tested in gas production parameters, and therefore the 1.0 dose was selected for further ileal fermentations. Starch and pectin showed similar (P>0.05) values of gas production rate and maximal gas production rate when they were fermented with caecal digesta (0.038 vs. 0.043%/h, and 13.7 vs. 15.2 mL/h, respectively), soft (0.022 vs. 0.031%/h, and 9.97 vs. 9.33 mL/h) and hard faeces (0.031 vs. 0.038%/h, and 13.6 vs. 10.8 mL/h), and values were higher than those for SBP and wheat straw; in contrast, values for starch and pectin differed with the ileal inoculum (0.046 vs. 0.024%/h, and 18.4 vs. 6.60 mL/h). Both ileal and caecal gas production parameters were well correlated with those for hard and soft faeces inocula, respectively (r≥0.77; P≤0.040). The ileal inoculum showed a relevant fermentative potential, but lower than that of caecal digesta and soft and hard faeces for all substrates except wheat starch.

Downloads

Download data is not yet available.

Author Biographies

Rodrigo Abad-Guzmán, Universidad Politécnica de Madrid Universidad Nacional de Loja

Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid

Carrera de Medicina Veterinaria y Zootecnia, Universidad Nacional de Loja

Jose Antonio Larrea-Dávalos, Universidad Politécnica de Madrid

Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas

Rosa Carabaño, Universidad Politécnica de Madrid

Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas

Javier García, Universidad Politécnica de Madrid

Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas

Maria Dolores Carro, Universidad Politecnica de Madrid

Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas

References

Abad R., Ibañez M.A., Carabaño R., García J. 2013. Quantification of soluble fibre in feedstuffs for rabbits and evaluation of the interference between the determinations of soluble fibre and intestinal mucin. Anim. Feed Sci. Tech., 182: 61-70. https://doi.org/10.1016/j.anifeedsci.2013.04.001

Abad-Guamán R., Carabaño R., Gómez-Conde M.S., García J. 2015. Effect of type of fiber, site of fermentation, and method of analysis on digestibility of soluble and insoluble fiber in rabbits. J. Anim. Sci., 93: 2860-2871. https://doi.org/10.2527/jas.2014-8767

Association of Official Analytical Chemists International. 2000. Official Methods of Analysis 17th ed. AOAC International, Washington, DC.

Bindelle J., Buldgen A., Lambotte D., Wavreille J., Leterme P. 2007. Effect of pig faecal donor and of pig diet composition on in vitro fermentation of sugar beet pulp. Anim. Feed Sci. Technol., 132: 212-226. https://doi.org/10.1016/j.anifeedsci.2006.03.010

Boletín Oficial del Estado (BOE). 2013. Royal Decree 53/2013 of February 1st on the protection of animals used for experimentation or other scientific purposes. BOE nº 34, 11370-11421. https://www.boe.es/boe/dias/2013/02/08/pdfs/BOE-A-2013-1337.pdf Accessed January 2017. In Spanish.

Bovera F., Calabro S., Cutrignelli M.I., Infascelli F., Piccolo G., Nizza S., Tudisco R., Nizza A. 2008. Prediction of rabbit caecal fermentation characteristics from faeces by in vitro gas production technique: roughages. J. Anim. Physiol. Anim. Nutr., 92: 260-271. https://doi.org/10.1111/j.1439-0396.2007.00748.x

Bovera F., D’Urso S., Di Meo C., Piccolo G., Calabro S., Nizza A. 2006. Comparison of rabbit caecal content and rabbit hard faeces as source of inoculum for the in vitro gas production technique. Asian Austral. J. Anim. Sci., 19: 1649-1657. https://doi.org/10.5713/ajas.2006.1649

Bovera F., D’Urso S., Meo C.D., Tudisco R., Nizza A. 2009. A model to assess the use of caecal and faecal inocula to study fermentability of nutrients in rabbit. J. Anim. Physiol. Anim. Nutr., 93: 147-156. https://doi.org/10.1111/j.1439-0396.2007.00795.x

Calabrò S., Nizza A., Pinna W., Cutrignelli M., Piccolo V. 1999. Estimation of digestibility of compound diets for rabbits using the in vitro gas production technique. World Rabbit Sci., 7: 197-201. https://doi.org/10.4995/wrs.1999.401

Carabaño R., Fraga M.J., Santoma G., de Blas C. 1988. Effect of diet on composition of cecal contents and on excretion and composition of soft and hard feces of rabbits. J. Anim. Sci 66: 901-1000. https://doi.org/10.2527/jas1988.664901x

Carabaño R., García J., de Blas J.C. 2001. Effect of fibre source on ileal apparent digestibility of non-starch polysaccharides in rabbits. Anim. Sci., 72: 343-350. https://doi.org/10.1017/S1357729800055843

Falcão-e-Cunha L., Peres H., Freire J.P.B., Castro-Solla L. 2004. Effects of alfalfa, wheat bran or beet pulp, with or without sunflower oil, on caecal fermentation and on digestibility in the rabbit. Anim. Feed Sci. Technol., 117: 131-149. https://doi.org/10.1016/j.anifeedsci.2004.07.014

García J., Carabaño R., de Blas J.C. 1999. Effect of fiber source on cell wall digestibility and rate of passage in rabbits. J. Anim. Sci., 77: 898-905. https://doi.org/10.2527/1999.774898x

García J., Carabaño R., Pérez-Alba L., de Blas J.C. 2000. Effect of fiber source on cecal fermentation and nitrogen recycled through cecotrophy in rabbits. J. Anim. Sci., 78: 638-646. https://doi.org/10.2527/2000.783638x

García J., Gidenne T., Falcão-e-Cunha L., de Blas C. 2002. Identification of the main factors that influence caecal fermentation traits in growing rabbits. Anim. Res. 51: 165-173. https://doi.org/10.1051/animres:2002011

Gidenne T. 1992. Effect of fiber level, particle-size and adaptation period on digestibility and rate of passage as measured at the ileum and in the feces in the adult-rabbit. Brit. J. Nutr., 67: 133-146. https://doi.org/10.1079/BJN19920015

Gidenne T. 1994. Effect of a reduction in fiber content on the rate of passage through the digestive-tract of the rabbit-comparison of models for the fecal kinetics of 2 markers. Reprod. Nutr. Dev., 34: 295-307. https://doi.org/10.1051/rnd:19940403

Goering H.K., Van Soest P.J. 1970. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Applications). USDA Agricultural Research Service, Handbook, Washington, DC.

Gouet P., Fonty G. 1979. Changes in the digestive microflora of holoxenic rabbits from birth until adulthood. Ann. Biol Anim. Bioch., 19: 553-566. https://doi.org/10.1051/rnd:19790501

Littell R.C., Henry P.R., Ammerman C.B. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci., 76: 1216-1231. https://doi.org/10.2527/1998.7641216x

Marounek M., Vovk S.J., Skrivanova V. 1995. Distribution of activity of hydrolytic enzymes in the digestive-tract of rabbits. Brit. J. Nutr., 73: 463-469. https://doi.org/10.1079/BJN19950048

Menke K.H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W. 1979. The estimation of the digestibility and metabolizable energy of ruminant feedingstuff from the gas production when they are incubated with rumen liquor in vitro. J. Agr. Sci., 93: 217-222. https://doi.org/10.1017/S0021859600086305

Mertens D.R., Allen M., Carmany J., Clegg J., Davidowicz A., Drouches M., Frank K., Gambin D., Garkie M., Gildemeister B., Jeffress D., Jeon C.S., Jones D., Kaplan D., Kim G.N., Kobata S., Main D., Moua X., Paul B., Robertson J., Taysom D., Thiex N., Williams J., Wolf M. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int., 85:1217-1240.

Mould F.L., Kliem K.E., Morgan R., Mauricio R.M. 2005. In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Tech., 123: 31-50. https://doi.org/10.1016/j.anifeedsci.2005.04.028

Murray S.M., Flickinger E.A., Patil A.R., Merchen N.R., Brent J.L., Fahey G.C. 2001. In vitro fermentation characteristics of native and processed cereal grains and potato starch using ileal chyme from dogs. J. Anim. Sci., 79: 435-444. https://doi.org/10.2527/2001.792435x

Omed H.M., Lovett D.K., Axford R.F.E. 2000. Faeces as a source of microbial enzymes for estimating digestibility, In: Givens D., Owen E., Axford R., Omed H. (Eds.), Forage Evaluation in Ruminant Nutrition, CAB International, UK, pp. 135-154. https://doi.org/10.1079/9780851993447.0135

Padilha M.T.S., Licois D., Gidenne T., Carre B., Fonty G. 1995. Relationships between microflora and caecal fermentation in rabbits before and after weaning. Reprod. Nutr. Dev., 35: 375-386. https://doi.org/10.1051/rnd:19950403

Pascual J.J., Cervera C., Fernández-Carmona J. 2000. Comparison of different in vitro digestibility methods for nutritive evaluation of rabbit diets. World Rabbit Sci., 8: 93-97. https://doi.org/10.4995/wrs.2000.425

Penney R.L., Folk G.E., Galask R.P., Petzold C.R. 1986. The microflora of the alimentary tract of rabbits in relation to pH, diet and cold. J. Appl. Rabbit Res., 9: 152-156.

Piattoni F., Demeyer D., Maertens L., 1997. Fasting effects on in vitro fermentation pattern of rabbit caecal contents. World Rabbit Sci., 5: 23-26. https://doi.org/10.4995/wrs.1997.314

Rodríguez-Romero N., Abecia L., Fondevila M., Balcells J. 2011. Effects of levels of insoluble and soluble fibre in diets for growing rabbits on faecal digestibility, nitrogen recycling and in vitro fermentation. World Rabbit Sci., 19: 85-94. https://doi.org/10.4995/wrs.2011.828

SAS Institute Inc. 2011. Base SAS® 9.3 Procedures Guide. SAS Institute Inc. Cary, NC, USA.

Schofield P., Pitt R.E., Pell A.N. 1994. Kinetics of fiber digestion from in-vitro gas-production. J. Anim. Sci., 72: 2980-2991. https://doi.org/10.2527/1994.72112980x

Tagliapietra F., Williams B.A., Awati A., Bonsembiante M., Schiavon S., Verstegen M.W.A. 2003. In vitro degradation kinetics of four carbohydrates using ileal and faecal inocula from suckling piglets. Ital. J. Anim. Sci., 2: 195-197.

Trocino A., García J., Carabaño R., Xiccato, G. 2013. A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Sci., 21: 1-15. https://doi.org/10.4995/wrs.2013.1285

Van Soest P.J., Robertson J.B., Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wang D., Williams B.A., Ferruzzi M.G., D’Arcy B.R. 2013. Different concentrations of grape seed extract affect in vitro starch fermentation by porcine small and large intestinal inocula. J. Sci. Food Agr., 93: 276-283. https://doi.org/10.1002/jsfa.5753

Williams B.A., Bhatia S.K., Boer H., Tamminga S. 1995. A preliminary study using the cumulative gas production technique to compare the kinetics of different fermentations by use of standard substrates. Ann. Zootech., 44: 35. https://doi.org/10.1051/animres:19950505

Williams B.A., Bosch M.W., Awati A., Konstantinov S.R., Smidt H., Akkermans A.D.L., Verstegen M.W.A., Tamminga S. 2005. In vitro assessment of gastrointestinal tract (GIT) fermentation in pigs: Fermentable substrates and microbial activity. Anim. Res., 54: 191-201. https://doi.org/10.1051/animres:2005011

Williams B.A., Verstegen M.W., Tamminga S. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207-228. https://doi.org/10.1079/NRR200127

Downloads

Published

2018-09-28

Issue

Section

Nutrition