Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus)

Bohao Zhao, Yang Chen, Lin Mu, Shuaishuai Hu, Xinsheng Wu


Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We identified differentially expressed microRNAs (miRNAs) between the back and belly skin in Rex rabbits. In total, 211 miRNAs (90 upregulated miRNAs and 121 downregulated miRNAs) were identified with a |log2 (fold change)|>1 and P-value<0.05. Using target gene prediction for the miRNAs, differentially expressed predicted target genes were identified and the functional enrichment and signalling pathways of these target genes were processed to reveal their biological functions. A number of differentially expressed miRNAs were found to be involved in regulation of the cell cycle, skin epithelium differentiation, keratinocyte proliferation, hair follicle development and melanogenesis. In addition, target genes regulated by miRNAs play key roles in the activities of the Hedgehog signalling pathway, Wnt signalling pathway, Osteoclast differentiation and MAPK pathway, revealing mechanisms of skin development. Nine candidate miRNAs and 5 predicted target genes were selected for verification of their expression by quantitative reverse transcription polymerase chain reaction. A regulation network of miRNA and their target genes was constructed by analysing the GO enrichment and signalling pathways. Further studies should be carried out to validate the regulatory relationships between candidate miRNAs and their target genes.


Rex rabbit; back skin; belly skin; miRNA; transcriptome

Full Text:



Adamidi C. 2008. Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnol., 26: 407-415.

Adijanto J., Castorino J.J., Wang Z.X., Maminishkis A., Grunwald G.B., Philp N.J. 2012. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J. Biol. Chem., 287: 20491-

Ahmed M.I., Alam M., Emelianov V.U., Poterlowicz K., Patel A., Sharov A.A., Mardaryev A.N., Botchkareva N.V. 2014. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. J. Cell Biol., 207: 549-567.

Alexander M., Kawahara G., Motohashi N., Casar J., Eisenberg I., Myers J., Gasperini M., Estrella E., Kho A., Mitsuhashi S. 2013. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Diff., 20: 1194-1208.

Anders S. 2010. Analysing RNA-Seq data with the DESeq package. Mol. Biol., 43: 1-17.

Andl T., Botchkareva N.V. 2015. MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research. Exp. Dermatol., 24: 821-826.

Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Develop. Cell, 2: 643-653.

Antonini D., Russo MT., De Rosa L., Gorrese M., Del Vecchio L., Missero C. 2010. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J. Invest. Dermatol., 130: 1249-1257.

Athar M., Tang X., Lee J.L., Kopelovich L., Kim AL. 2006. Hedgehog signalling in skin development and cancer. Exp. Dermatol., 15: 667-677.

Bartel D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281-297.

Bashirullah A., Pasquinelli A.E., Kiger A.A., Perrimon N., Ruvkun G., Thummel C.S. 2003. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol., 259: 1-8.

Bommer GT., Gerin I., Feng Y., Kaczorowski AJ., Kuick R., Love RE., Zhai Y., Giordano TJ., Qin ZS., Moore BB. 2007. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol., 17: 1298-1307.

Braun C.J., Zhang X., Savelyeva I., Wolff S., Moll U.M., Schepeler T., Ørntoft T.F., Andersen C.L., Dobbelstein M. 2008. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res., 68: 10094-10104.

Callis T.E., Chen J.F., Wang D.Z. 2007. MicroRNAs in skeletal and cardiac muscle development. Dna Cell Biol., 26: 219-225.

Caramuta S., Egyházi S., Rodolfo M., Witten D., Hansson J., Larsson C., Lui W.O. 2010. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol., 130: 2062-2070.

Chen C.H., Sakai Y., Demay M.B. 2001. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology, 142: 5386-5386.

D’Juan T.F., Shariat N., Park C.Y., Liu H.J., Mavropoulos A., McManus M.T. 2013. Partially penetrant postnatal lethality of an epithelial specific MicroRNA in a mouse knockout. Plos One 8: e76634.

DeYoung M.P., Johannessen C.M., Leong C.O., Faquin W., Rocco J.W., Ellisen L.W. 2006. Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res., 66: 9362-9368.

Eckert R.L., Welter J.F. 1996. Transcription factor regulation of epidermal keratinocyte gene expression. Mol. Biol. Rep., 23: 59-70.

Enright A.J., Bino J., Ulrike G., Thomas T., Chris S., Marks D.S. 2004. MicroRNA targets in Drosophila. Gen. Biol., 5: R1-R1.

Fontanesi L., Scotti E., Allain D., Dall’Olio S. 2014. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim. Genet., 45: 248-255.

Fontanesi L., Vargiolu M., Scotti E., Latorre R., Pellegrini M.S.F., Mazzoni M., Asti M., Chiocchetti R., Romeo G., Clavenzani P. 2014. The KIT gene is associated with the English spotting coat color locus and congenital megacolon in Checkered Giant rabbits (Oryctolagus cuniculus). Plos One 9: e93750.

Fuchs E. 2007. Scratching the surface of skin development. Nature, 445: 834-842.

Georges S.A., Chau B.N., Braun C.J., Zhang X., Dobbelstein M. 2009. Cell cycle arrest or apoptosis by p53: are microRNAs-192/215 and-34 making the decision? Cell Cycle 8: 677-682.

Jackson S.J., Zhang Z., Feng D., Flagg M., O’Loughlin E., Wang D., Stokes N., Fuchs E., Yi R. 2013. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development, 140: 1882-1891.

Katoh Y., Katoh M. 2008. Hedgehog signaling, epithelial-tomesenchymal transition and miRNA (review). Int. J. Mol. Med., 22: 271-275.

Kim K., Vinayagam A., Perrimon N. 2014. A rapid genomewide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep., 7: 2066-2077.

Kochegarov A., Moses A., Lian W., Meyer J., Hanna M.C., Lemanski L.F. 2013. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. J. Biomed. Sci., 20: 1.

Kozomara, A., Griffiths J. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 42: 68-73.

Kureel J., Dixit M., Tyagi A., Mansoori M., Srivastava K., Raghuvanshi A., Maurya R., Trivedi R., Goel A., Singh D. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis., 5: e1050.

Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357-359.

Lim X., Nusse R. 2013. Wnt signaling in skin development, homeostasis, and disease. CSH Perspect. Biol., 5: a008029.

Liu Z., Xiao H., Li H., Zhao Y., Lai S., Yu X., Cai T., Du C., Zhang W., Li J. 2012. Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing. Plos One 7: e50001.

Mardaryev A.N., Ahmed M.I., Vlahov N.V., Fessing M.Y., Gill J.H., Sharov A.A., Botchkareva N.V. 2010. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J. 24: 3869-3881.

Mills A.A., Zheng B., Wang X.J., Vogel H., Roop D.R., Bradley A. 1999. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398: 708-713.

Mueller D.W., Rehli M., Bosserhoff A.K. 2009. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol., 129: 1740-1751.

Naeem H., Küffner R., Csaba G., Zimmer R. 2010. miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature. Bmc Bioinformatics, 11: 135.

Neilson J.R., Zheng G.X., Burge CB., Sharp P.A. 2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Gene. Dev., 21: 578-589.

Oda Y., Ishikawa M.H., Hawker N.P., Yun Q.C., Bikle D.D. 2007. Differential role of two VDR coactivators, DRIP205 and SRC-3, in keratinocyte proliferation and differentiation. J. Steroid Biochem., 103: 776-780.

Pan L., Liu Y., Wei Q., Xiao C., Ji Q., Bao G., Wu X. 2015. Solexa-

Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus). Plos One: 10.

Rosenfield R.L., Deplewski D., Greene M.E. 2001. Peroxisome proliferator-activated receptors and skin development. Horm. Res. Paediat., 54: 269-274.

Schneider M.R. 2012. MicroRNAs as novel players in skin development, homeostasis and disease. Brit. J. Dermatol., 166: 22-28.

Senoo M., Pinto F., Crum C.P., McKeon F. 2007. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129: 523-536.

Song B., Wang Y., Kudo K., Gavin E.J., Xi Y., Ju J. 2008. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res., 14: 8080-8086.

Suh K.S., Mutoh M., Mutoh T., Li L., Ryscavage A., Crutchley J.M., Dumont R.A., Cheng C., Yuspa S.H. 2007. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J. Cell Sci., 120: 2631-2640.

Tao Y. 2010. Studies on the quality of rex rabbit fur. World Rabbit Sci., 2: 21-24.

Tian X., Jiang J., Fan R., Wang H., Meng X., He X., He J., Li H., Geng J., Yu X. 2012. Identification and characterization of microRNAs in white and brown alpaca skin. BMC genomics 13: 1.

Vadlakonda L., Pasupuleti M., Pallu R. 2014. Role of PI3K-AKTmTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 3: 85.

van Amerongen R., Fuerer C., Mizutani M., Nusse R. 2012. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol., 369: 101-114.

Vousden K.H., Lane D.P. 2007. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 8: 275-283.

Wang P., Li Y., Hong W., Zhen J., Ren J., Li Z., Xu A. 2012. The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol. BioSyst., 8: 2924-2931.

Whelan J.T., Hollis S.E., Cha D.S., Asch A.S., Lee M.H. 2012. Post‐transcriptional regulation of the Ras‐ERK/MAPK signaling pathway. J. Cell Physiol., 227: 1235-1241.

Xia H., Ooi L.L.P.J., Hui K.M. 2013. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology, 58: 629-641.

Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C. 1999. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398: 714-718.

Yu J., Peng H., Ruan Q., Fatima A., Getsios S., Lavker R.M. 2010. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 24: 3950-3959.

Yu J., Ryan D.G., Getsios S., Oliveira-Fernandes M., Fatima A., Lavker R.M. 2008. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. In Proc.: National Academy of Sciences 105: 19300-19305.

Zhang L., Nie Q., Su Y., Xie X., Luo W., Jia X., Zhang X. 2013. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene, 519: 77-81.

Zhao Y., Wang P., Meng J., Ji Y., Xu D., Chen T., Fan R., Yu X., Yao J., Dong C. 2015. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a. Int. J. Mol. Sci., 16: 10921-10933.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. The comprehensive detection of miRNA, lncRNA, and circRNA in regulation of mouse melanocyte and skin development
Zhiwei Zhu, Yueyue Ma, Yuan Li, Pengfei Li, Zhixue Cheng, Huifeng Li, Lihuan Zhang, Zhongwei Tang
Biological Research  vol: 53  issue: 1  year: 2020  
doi: 10.1186/s40659-020-0272-1


 Universitat Politècnica de València


Official journal of the World Rabbit Science Association (WRSA)


e-ISSN: 1989-8886     ISSN: 1257-5011