Effect of restricted feeding under rearing on reproduction, body condition and blood metabolites of rabbit does selected for growth rate

C. Naturil-Alfonso, F. Marco-Jiménez, J.J. Pascual, J.S. Vicente

Abstract

Young rabbit females selected for growth rate can have nutritional needs which may not be met by the common practice of feed restriction during rearing in commercial rabbit production. The aim of this study was to analyse the effect of two different feeding programmes: restricted and ad libitum feeding, applied in young rabbit females for one month at the end of rearing, on reproductive performance, body condition and circulating metabolic hormones and metabolites in a rabbit line selected by growth rate in 3 consecutive reproductive cycles. Thus, twenty-four 16-week-old does were randomly assigned to a group in which the daily recommended nutrient intakes were satisfied (fed restricted: 130 g/day, n=13) or a group fed to satiety (ad libitum: 235.5 g/day, n=11) during one month. Then, all does were inseminated in 3 consecutive cycles using a 42-day reproductive cycle. Measurements of does’ body weight, perirenal fat thickness and plasma leptin, non-esterified-fatty-acids (NEFA), beta-hydroxybutyrate (BOHB) and fructosamine were performed at artificial insemination (AI), parturition and weaning time in 3 consecutive cycles. Reproductive performance of does was evaluated based on fertility, litter size at parturition, prolificacy and productivity. Differences in body weight were found only in the 1st cycle, ad libitum fed females being heavier than restricted ones. Nevertheless, body weight variances disappeared in later cycles. No differences were found in perirenal fat thickness. Finally, in ad libitum fed females slight differences were found in plasma levels of NEFAs (452 vs. 258 μekv/L and 527 vs. 306 μekv/L for 1st and 2nd cycles) and BOHB (0.26 vs. 0.03 mM for 2nd cycle), but disappeared in the 3rd reproductive cycle. Fertility, prolificacy and productivity was not significantly affected by the feeding programme. Nevertheless, total litter size showed to be higher in ad libitum fed females at second parturition (8.7 vs. 5.9 kits). Therefore, the evaluated feeding programmes until first AI in females selected by growth rate had no effect on their reproductive outcomes, as the global reproductive performance was not affected.

Keywords

feeding regimen; metabolic status; reproductive performance; rabbit doe; growth rate

Full Text:

PDF

References

Arias-Álvarez M., García-García R.M., Rebollar P.G., Nicodemus N., Revuelta L., Millán P., Lorenzo P.L. 2009. Effects of a lignin-rich fiber diet on productive, reproductive and endocrine parameters in nulliparous rabbit does. Livest. Sci., 123: 107-115. https://doi.org/10.1016/j.livsci.2008.10.013

Asworth C.J., Antipatis C., Beattie L. 1999a. Effects of preand post-mating nutritional status on hepatic function, progesterone concentration, uterine protein secretion and embryo survival in Meishan pigs. Reprod. Fertil. Dev., 11: 67-73. https://doi.org/10.1071/RD99007

Asworth C.J., Beattie L., Antipatis C., Vallet J. 1999b. Effects of pre- and post-mating feed intake on blastocyst size, secretory function and glucose metabolism in Meishan gilts. Reprod. Fertil. Dev., 11: 323-327. https://doi.org/10.1071/RD99040

Baselga M. 2004. Genetic improvement of meat rabbits. Programmes and diffusion. In: Proc. 8th World Rabbit Congress, September 7- 10, 2004, Puebla, Mexico, 1-13.

Blasco A. 1989. Genética y nutrición del conejo. In: de Blas C. Alimentación del conejo. (ed.) Ediciones Mundi, Prensa, Madrid.

Brecchia G., Bonanno A., Galeati G., Federici C., Maranesi M., Gobbetti A., Zerani M., Boiti C. 2006. Hormonal and metabolic adaptation to fasting: Effects on the hypothalamicpituitary-ovarian axis and reproductive performance of rabbit does. Domest. Anim. Endocrinol., 31: 105-122. https://doi.org/10.1016/j.domaniend.2005.09.006

Bünger L., Lewis R.M., Rothschild M.F., Blasco A., Renne U., Simm G. 2005. Relationships between quantitative and reproductive fitness traits in animals. Phil. Trans. R. Soc. B., 360: 1489-1502. https://doi.org/10.1098/rstb.2005.1679

Camacho J., Baselga M. 1990. Genetic correlation between reproductive and growth traits in rabbits. In Proc: 4th World Congress on Genetics Applied to the Livestock Production, Edinburgh, Scotland 16: 366-369. https://doi.org/10.1111/j.1439-0388.2011.00975.x

Daoud N.M., Mahrous K.F., Ezzo O.H. 2012. Feed restriction as a biostimulant of the production of oocytes, their quality and GDF-9 gene expression in rabbit oocytes. Anim. Reprod. Sci., 136: 121-127. https://doi.org/10.1016/j.anireprosci.2012.09.011

Edwards L.J., McMillen IC. 2002. Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo-pituitary adrenal axis in sheep during late gestation. Biol. Reprod., 66: 1562-1569. https://doi.org/10.1095/biolreprod66.5.1562

Estany J., Camacho J., Baselga M., Blasco A. 1992. Selection response of growth rate in rabbits for meat production. Genet. Sel. Evol., 24: 527-537. https://doi.org/10.1186/1297-9686-24-6-527

Ferguson E.M., Ashworth C.J., Edwards S.A., Hawkins N., Hepburn N., Hunter M.G. 2003. Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction, 126: 61-71. https://doi.org/10.1530/rep.0.1260061

Fortun-Lamothe L. 2006. Energy balance and reproductive performance in rabbit does. Anim. Reprod. Sci., 93: 1-15. https://doi.org/10.1016/j.anireprosci.2005.06.009

García M.L., Baselga M. 2002. Estimation of correlated response on growth traits to selection in litter size of rabbits using a cryopreserved control population and genetic trends. Livest. Prod. Sci., 78: 91-98. https://doi.org/10.1016/S0301-6226(02)00093-3

García-García R.M., Rebollar P.G., Arias-Álvarez M., Sakr O.G., Bermejo-Álvarez P., Brecchia G., Gutierrez-Adan A., Zerani M., Boiti C., Lorenzo P.L. 2011. Acute fasting before conception affects metabolic and endocrine status without impacting follicle and oocyte development and embryo gene expression in the rabbit. Reprod. Fertil. Dev., 23: 759-768. https://doi.org/10.1071/RD10298

Garreau H., Szendro Z.S., Larzul C., Rochambeau H. 2000. Genetic parameters and genetic trends of growth and litter size traits in the white Pannon breed. In Proc: 7th World Rabbit Congress, 4-7 july 2000, Valencia, Spain, 403-408.

Gómez E.A., Rafel O., Ramón J. 1998. Genetic relationships between growth and litter size traits at first parturition in a specialized dam line. In Proc: 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia. 25: 552-555.

Gómez A.E., Baselga M., Rafel O., García M.L., Ramón J. 1999. Selection, diffusion and performances of six Spanish lines of meat rabbit. Cahiers Options Méditerranéennes, 41: 147-152.

Harano Y., Ohtsuki M., Ida M., Kojima H., Harada M., Okanishi T., Kashiwagi A., Ochi Y., Uno S., Shigeta Y. 1985. Direct automated assay method for serum or urine levels of ketone bodies. Clin. Chim. Acta, 151: 177-183. https://doi.org/10.1016/0009-8981(85)90321-3

Littell R.C., Henry P.R., Ammerman C.B. 1998. Statistically analysis of repeated measures data using SAS procedures. J. Anim. Sci., 76: 1216-1231. https://doi.org/10.2527/1998.7641216x

Martínez-Paredes E., Ródenas L., Martínez-Vallespín B., Cervera C., Blas E., Brecchia G., Boiti C., Pascual J.J. 2012. Effects of feeding programme on the performance and energy balance of nulliparous rabbit does. Animal, 6: 1086-1095. https://doi.org/10.1017/S1751731111002643

MacLaughlin S.M., Walker S.K., Roberts C.T., Kleemann D., McMillen I.C. 2005. Periconceptional nutrition and the relationship between maternal body weight changes in the periconceptional period and feto-placental growth in the sheep. J. Physiol., 565: 111-124. https://doi.org/10.1113/jphysiol.2005.084996

Mgheni M., Christensen K. 1985. Selection experiment on growth and litter size in rabbits: II. Two-way selection response for body weight at 112 d. Acta. Agric. Scand., 95: 278-286. https://doi.org/10.1080/00015128509435784

Naturil-Alfonso C., Marco-Jiménez F., Jiménez-Trigos E., Saenzde-Juano M.D., Viudes-de-Castro M.P., Lavara R., Vicente J.S. 2015. Role of embryonic and maternal genotype on prenatal survival and foetal growth in rabbit. Reprod. Domest. Anim., 50: 312-320. https://doi.org/10.1111/rda.12493

Naturil-Alfonso C., Lavara R., Vicente J.S., Marco-Jiménez F. 2016. Effects of female dietary restriction in a rabbit growth line during rearing on reproductive performance and embryo quality. Reprod. Domest. Anim., 51: 114-122. https://doi.org/10.1111/rda.12653

Pascual J.J., Castella F., Cervera C., Blas E., Fernández-Carmona J. 2000a. The use of ultrasound measurement of perirenal fat thickness to estimate changes in body condition of young female rabbits. Anim. Sci., 70: 435-442. https://doi.org/10.1017/S135772980005178X

Pascual J.J., Cervera C., Fernández-Carmona J. 2000b. The effect of dietary fat on the performance and body composition of rabbits in their second lactation. Anim. Feed. Sci. Tech., 86: 191-203. https://doi.org/10.1016/S0377-8401(00)00166-8

Pascual J.J., Motta W., Cervera C., Quevedo F., Blas E., Fernández-Carmona J. 2002. Effect of dietary energy source on the performance and perirenal fat thickness evolution of primiparous rabbit does. Anim. Sci., 75: 267-279. https://doi.org/10.1017/S1357729800053029

Pacual J.J., Savietto D., Cervera C., Baselga M. 2013. Resources allocation in reproductive rabbit does: A review of feeding and genetic strategies for suitableperformance. Wold Rabbit Sci., 21: 123-144. https://doi.org/10.4995/wrs.2013.1236

Picone O., Laigre P., Fortun-Lamothe L., Archilla C., Peynot N., Ponter A.A., Berthelot V., Cordier A.G., Duranthon V., Chavatte-Palmer P. 2011. Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology, 75: 287-299. https://doi.org/10.1016/j.theriogenology.2010.08.015

Piles M., Rafel O., Ramon J., Varona L. 2005. Genetic parameters of fertility in two lines of rabbits with different reproductive potential. J. Anim. Sci., 83: 340-343. https://doi.org/10.2527/2005.832340x

Piles M., Tusell L. 2011. Genetic correlation between growth and female and male contributions to fertility in rabbit. J. Anim. Breed. Genet., 129: 298-305. https://doi.org/10.1111/j.1439-0388.2011.00975.x

Ragab M., Baselga M. 2010. Inbreeding effect on reproductive traits in four maternal lines of rabbits. In Proc: 9th World Congress on Genetics Applied to Livestock Production, Leipzig (Germany), p. ID083.

Rauw W., Kanis M.E., Noordhuizen-Stassen E.N., Grommers FJ. 1998. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci., 56: 15-33. https://doi.org/10.1016/S0301-6226(98)00147-X

Rochambeau H., Bolet G., Tudela F. 1994. Long-term selection. Comparison of two rabbit strains. In Proc: 5th World Congress Genetics Applied Livestock Production, August 1994, Guelph, Canada, 19: 257-260.

Rommers J.M., Meijerhof R., Noordhuizen J.P.T.M., Kemp B. 2004. Effect of feeding program during rearing and age at first insemination on performances during subsequent reproduction in young rabbit does. Reprod. Nutr. Dev., 44:321-332. https://doi.org/10.1051/rnd:2004037

Savietto D., Cervera C., Ródenas L., Martínez-Paredes E., Baselga M., García-Diego F.J., Larsen T., Friggens N.C., Pascual J.J. 2014. Different resource allocation strategies result from selection for litter size at weaning in rabbit does. Animal, 8: 618-628. https://doi.org/10.1017/S1751731113002437

True M.W. 2009. Circulating biomarkers of glycemia in diabetes management and implications for personalized medicine. J. Diabetes. Sci. Technol., 3: 743-747. https://doi.org/10.1177/193229680900300421

Verdelhan S., Bourdillon A., David J.J., Hurtaud J., Lédan L., Renouf B., Roulleau X., Salaun J.M. 2005. Comparaison de deux programmes alimentaires pour la préparation des futures reproductrices. In Proc: 11èmes Journées de la Recherche Cunicole, 29-30 Novembre, Paris.

Vicente J.S., Llobat L., Viudes-de-Castro M.P., Lavara R., Baselga M., Marco-Jiménez F. 2012. Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77: 81-88. https://doi.org/10.1016/j.theriogenology.2011.07.019

Viudes-de-Castro M.P., Vicente J.S. 1997. Effect of sperm count on the fertility and prolificity traits of meat rabbits. Anim. Reprod. Sci., 46: 313-319. https://doi.org/10.1016/S0378-4320(96)01628-4

Watkins A.J., Ursell E., Panton R., Papenbrock T., Hollis L., Cunningham C., Wilkins A., Perry V.H., Sheth B., Kwong W.Y., Eckert J.J., Wild A.E., Hanson M.A., Osmond C., Fleming T.P. 2008. Adaptative response by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod., 78: 299-306. https://doi.org/10.1095/biolreprod.107.064220

Wolfenson D., Blum O. 1988. Embryonic development, conception rate, ovarian function and structure in pregnant rabbits heatstressed before or during implantation. Anim. Reprod. Sci., 17:259-270. https://doi.org/10.1016/0378-4320(88)90063-2

Xiccato G., Trocino A. 2010. Energy and Protein Metabolism and Requirements. In: de Blas C., Wiseman J. (ed). Nutrition of the Rabbit 2nd edition. CABI, Wallingford, UK, 83-118. https://doi.org/10.1079/9781845936693.0083

Abstract Views

1032
Metrics Loading ...

Metrics powered by PLOS ALM




Official journal of the World Rabbit Science Association (WRSA)

© Universitat Politècnica de València. All rights reserved

© World Rabbit Science Associated. All rights reserved

e-ISSN: 1989-8886     ISSN: 1257-5011   https://doi.org/10.4995/wrs