Mass transfer dynamics during brining of rabbit meat

Z. Wang, Z. He, H. Li

Abstract

As a traditional processing method, brining is a preliminary, critical and even essential process for many traditional rabbit meat products in China. The aim of this work was to investigate mass transfer of rabbit meat brined in different salt concentration. Rabbit meat (Longissimus dorsi) was brined for 24 h in 5 brine solutions (5, 10, 15, 20 and 25% NaCl [w/w]). Results indicated that mass transfer and kinetics parameters were significantly affected by the brine concentration during brining. When brine concentration increased, the total and water weight changes decreased, whereas the sodium chloride weight changes increased. Higher brine concentrations resulted in a higher degree of protein denaturation and consequently gave lower process yields. Samples treated with higher brine concentrations obtained lower brining kinetic parameter values for total weight changes and water weight changes, whereas they acquired higher values for sodium chloride weight changes.

Keywords

rabbit meat; brining; mass transfer

Full Text:

PDF

References

Aliño M., Grau R., Fernández-Sánchez A., Arnold A., Barat J.M. 2010. Influence of brine concentration on swelling pressure of pork meat throughout salting. Meat Sci., 86: 600-606. https://doi.org/10.1016/j.meatsci.2010.04.010

Andrés A., Rodríguez-Barona S., Barat J.M., Fito P. 2002. Note: Mass transfer kinetics during cod salting operation. Food Sci. Technology Res., 8: 309-314. https://doi.org/10.1177/1082013202008005117

Barat J.M., Rodríguez-Barona S., Andrés A., Fito P. 2002. Influence of Increasing Brine Concentration in the Cod-Salting Process. J. Food Sci., 67: 1922-1925. https://doi.org/10.1111/j.1365-2621.2002.tb08747.x

Barat, J.M., Rodríguez-Barona, S., Andrés, A., Ibáñez, J.B. 2004. Modeling of the cod desalting operation. J. Food Sci., 69: 183-189. https://doi.org/10.1111/j.1365-2621.2004.tb06345.x

Cao Y., Xiong Y.L. 2015. Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chem., 180:235-243. https://doi.org/10.1016/j.foodchem.2015.02.036

Dalle Zotte A., Szendrő Z. 2011. The role of rabbit meat as functional food. Meat Sci., 88: 319-331. https://doi.org/10.1016/j.meatsci.2011.02.017

Deumier F., Trystram G., Collignan A., Guédider L., Bohuon P. 2003. Pulsed vacuum brining of poultry meat: interpretation of mass transfer mechanisms. J. Food Eng., 58: 85-93.

https://doi.org/10.1016/S0260-8774(02)00367-9

Du L., Zhou G.H., Xu X.L., Li C.B. 2010. Study on kinetics of mass transfer in water-boiled salted duck during brining. J. Food Eng., 100: 578-584. https://doi.org/10.1016/j.jfoodeng.2009.08.034

FAOSTAT, http://faostat3.fao.org/browse/Q/QL/E Accessed September 2017.

Filipović V.S., Ćurčić B.L., Nićetin M.R., Plavšić D.V., Koprivica G.B., Filipović, V.S., Ćurčić, B.L., Nićetin, M.R., Plavšić, D.V., Koprivica, G.B., Mišljenović, N.M. 2012. Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions. Hemijska industrija, 66: 743-748. https://doi.org/10.2298/HEMIND120130033F

Gallart-Jornet L., Barat J.M., Rustad T., Erikson U., Escriche I., Fito P. 2007. Influence of brine concentration on Atlantic salmon fillet salting. J. Food Eng., 80: 267-275. https://doi.org/10.1016/j.jfoodeng.2006.05.018

Goli T., Bohuon P., Ricci J., Trystram G., Collignan A. 2011. Mass transfer dynamics during the acidic marination of turkey meat. J. Food Eng., 104: 161-168. https://doi.org/10.1016/j.jfoodeng.2010.12.010

Graiver N., inotti A., Califano A., Zaritzky N. 2009. Mathematical modeling of the uptake of curing salts in pork meat. J. Food Eng., 95: 533-540. https://doi.org/10.1016/j.jfoodeng.2009.06.027

Knight P., Parsons N. 1988. Action of NaCl and polyphosphates in meat processing: Responses of myofibrils to concentrated salt solutions. Meat Sci., 24: 275-300. https://doi.org/10.1016/0309-1740(88)90040-X

Lefevre F., Fauconneau B., Thompson J.W., Gill T.A. 2007. Thermal denaturation and aggregation properties of Atlantic salmon myofibrils and myosin from white and red muscles. J.Agric. Food Chem., 55: 4761-4770. https://doi.org/10.1021/jf063045d

Leng X.J., Zhang L., Huang M., Xu X.L., Zhou G.H. 2013. Mass transfer dynamics during high pressure brining of chicken breast. J. Food Eng., 118: 296-301. https://doi.org/10.1016/j.jfoodeng.2013.04.022

Nakai S., Li Chan E., Hayakawa S. 1986. Contribution of protein hydrophobicity to its functionality. Nahrung., 30: 327-336. https://doi.org/10.1002/food.19860300331

Petracci M., Cavani C. 2013. Rabbit meat processing: historical perspective to future directions. World Rabbit Science, 21: 217-226. https://doi.org/10.4995/wrs.2013.1329

Qiu C., Xia W., Jiang Q. 2014. Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure. Eur. Food Res. Tec., 38: 753-761. https://doi.org/10.1007/s00217-014-2155-6

Robinson H.W., Hodgen C.G. 1940. Protein estimation with the biuret method. J. Biol. Chem., 135: 707-725.

Sabadini E., Carvalho Jr B.C., Sobral P.D.A., Hbinger M.D. 1998. Mass transfer and diffusion coefficient determination in the wet and dry salting of meat. Drying Tec., 6:095-2115. https://doi.org/10.1080/07373939808917514

Sante-Lhoutellier V., Aubry L., Gatellier P. 2007. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J. Agric. Food Chem., 55: 5343-5348. https://doi.org/10.1021/jf070252k

Schmidt F.C., Carciofi B.A.M., Laurindo J.B. 2008. Salting operational diagrams for chicken breast cuts: hydration–dehydration. J. Food Eng., 88: 36-44. https://doi.org/10.1016/j.jfoodeng.2007.12.005

Telis V.R.N., Romanelli P.F., Gabas A.L., Telis-Romero J. 2003. Salting kinetics and salt diffusivities in farmed Pantanal caiman muscle. Pesquisa Agropecuária Brasileira, 38: 529-535.

https://doi.org/10.1590/S0100-204X2003000400012

Thorarinsdottir K.A., Arason S., Geirsdottir M., Bogason S.G., Kristbergsson K. 2002. Changes in myofibrillar proteins during processing of salted cod (Gadus morhua) as determined by electrophoresis and differential scanning calorimetry. Food Chem., 77: 377-385. https://doi.org/10.1016/S0308-8146(01)00349-1

Van Nguyen M., Arason S., Thorarinsdottir K.A., Thorkelsson G., Gudmundsdóttir A. 2010. Influence of salt concentration on the salting kinetics of cod loin (Gadus morhua) during brine salting. J. Food Eng., 100: 225-231. https://doi.org/10.1016/j.jfoodeng.2010.04.003

Xiong Y.L., Lou X., Wang C., Moody W.G., Harmon R.J. 2000. Protein extraction from chicken myofibrils irrigated with various polyphosphate and NaCl solutions. J. Food Sci., 65: 96-100. https://doi.org/10.1111/j.1365-2621.2000.tb15962.x

Zhang Q., Xiong S., Liu R., Xu J., Zhao S. 2011. Diffusion kinetics of sodium chloride in Grass carp muscle and its diffusion anisotropy. J. Food Eng., 107: 311-318. https://doi.org/10.1016/j.jfoodeng.2011.07.011

Abstract Views

1184
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. The Effects of Lipid Oxidation Product Acrolein on the Structure and Gel Properties of Rabbit Meat Myofibrillar Proteins
Zhaoming Wang, Zhifei He, Xiao Gan, Hongjun Li
Food Biophysics  vol: 13  issue: 4  first page: 374  year: 2018  
doi: 10.1007/s11483-018-9543-6



 

 Universitat Politècnica de València

 

Official journal of the World Rabbit Science Association (WRSA)

 

e-ISSN: 1989-8886     ISSN: 1257-5011   https://doi.org/10.4995/wrs