Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli


  • J. Zhao Nanjing Agricultural University
  • L. He Harvard Medical School
  • L. Pan Zhejiang Academy of Agricultural Sciences
  • Y. Liu Zhejiang Academy of Agricultural Sciences
  • H. Yao Nanjing Agricultural University
  • G. Bao Nanjing Agricultural University




atypical enteropathogenic Escherichia coli, bacteriophage, phage therapy, rabbit


Pathogenic Escherichia coli (E. coli) is severely threatening the rabbit industry in China, and the concern over antibiotic-resistant bacteria has given rise to an urgent need for antibiotic alternatives. In this study, a member (ZRP1) of the Myoviridae family was isolated from rabbit faeces using a strain of rabbit atypical enteropathogenic E. coli (ZR1) as host. The one-step growth curve indicated that the latent period was around 25 to 30 min and the burst size was 144±31 plaque-forming unit/cell. The rate of phage-resistant mutation was 7×10–5±4×10–5. When the bacteriophage input at the multiplicity of infection (MOI) was 0.1, 1 or 10, the growth of host E. coli in broth was inhibited for 5 h. A single intravenous injection of ZRP1 at MOI 0.1, 1 or 10 significantly prolonged the survival time of rabbits which simultaneously received a lethal dose of ZR1.


Download data is not yet available.

Author Biographies

J. Zhao, Nanjing Agricultural University

College of Veterinary Medicine, Nanjing Agricultural University


Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences

L. He, Harvard Medical School

Department of Surgery, Beth Israel Deaconess Medical Center

L. Pan, Zhejiang Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Science

Y. Liu, Zhejiang Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Science

H. Yao, Nanjing Agricultural University

College of Veterinary Medicine

G. Bao, Nanjing Agricultural University

College of Veterinary Medicine, Nanjing Agricultural University


Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences


Alam M., Akhter M.Z., Yasmin M., Ahsan C.R., Nessa, J. 2011. Local bacteriophage isolates showed anti- Escherichia coli O157:H7 potency in an experimental ligated rabbit ileal loop model. Can. J. Microbiol., 57: 408-415. https://doi.org/10.1139/w11-020

Cerveny K.E., DePaola A., Duckworth D.H., Gulig P.A. 2002. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun., 70: 6251-6262.


Chacon-J. L.M., Lizeth Taylor, C., Carmen Valiente, A., Irene Alvarado, P., Ximena Cortes, B. 2012. A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples. Braz. J. Microbiol., 43: 1319-1326. https://doi.org/10.1590/S1517-83822012000400012

Chan B.K., Abedon S.T., Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Futute Microbiol., 8: 769-783. https://doi.org/10.2217/fmb.13.47

Chibani-Chennoufi S., Sidoti J., Bruttin A., Kutter E., Sarker S., and Brussow H. 2004. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob. Agents Chemother., 48: 2558-2569. https://doi.org/10.1128/AAC.48.7.2558-2569.2004

Cunha S., Mendes Â., Rego D., Meireles D., Fernandes R., Carvalho A., Martins Da Costa P. 2017. Effect of competitive exclusion in rabbits using an autochthonous probiotic. World Rabbit Sci., 25: 123-134. https://doi.org/10.4995/wrs.2017.4533

Han J.E., Kim J.H., Hwang S.Y., Choresca C.H. Jr., Shin S.P., Jun J.W., Chai J.Y., Park Y.H., Park S.C. 2013. Isolation and characterization of a Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis. Res. Vet. Sci. 95: 758-763. https://doi.org/10.1016/j.rvsc.2013.06.001

Henein A. 2013. What are the limitations on the wider therapeutic use of phage? Bacteriophage, 3: e24872. https://doi.org/10.4161/bact.24872

Huff W.E., Huff G.R., Rath N.C., Balog J.M., Donoghue A.M. 2005. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult. Sci., 84: 655-659. https://doi.org/10.1093/ps/84.4.655

Jamalludeen N., Johnson R.P., Friendship R., Kropinski A.M., Lingohr E.J., Gyles C.L. 2007. Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Vet. Microbiol., 124: 47-57. https://doi.org/10.1016/j.vetmic.2007.03.028

Kaper J.B., Nataro J.P., Mobley H.L. 2004. Pathogenic Escherichia coli. Nat. Rev. Mivrobiol., 2: 123-140. https://doi.org/10.1038/nrmicro818

Lee Y., Kim J., Park J. 2013. Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157:H7. Food Control, 34: 255-260. https://doi.org/10.1016/j.foodcont.2013.04.043

Mai Huong Ly-Chatain. 2014. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol., 5: 51. https://doi.org/10.3389/fmicb.2014.00051

Nataro J.P., Kaper J.B. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev., 11: 142-201.

O’Flynn G., Ross R.P., Fitzgerald G.F., Coffey A. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol., 70: 3417-3424. https://doi.org/10.1128/AEM.70.6.3417-3424.2004

Payne R.J., Jansen V.A. 2003. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinet., 42: 315-325. https://doi.org/10.2165/00003088-200342040-00002

Penteado A.S., Ugrinovich L.A., Blanco M., Blanco J.E., Mora A., Andrade J.R., Correa S.S., Pestana de Castro A.F. 2002. Serobiotypes and virulence genes of Escherichia coli strains isolated from diarrheic and healthy rabbits in Brazil. Vet. Microbiol., 89: 41-45.


Pouillot F., Chomton M., Blois H., Courroux C., Noelig J., Bidet P., Bingen E., Bonacorsi S. 2012. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother., 56: 3568-3575. https://doi.org/10.1128/AAC.06330-11

Skurnik M., Strauch E. 2006. Phage therapy: facts and fiction. Int. J. Med. Microbiol., 296: 5-14. https://doi.org/10.1016/j.ijmm.2005.09.002

Smith H.W., Huggins M.B. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. J. Gen. Microbiol., 129: 2659-2675. https://doi.org/10.1099/00221287-129-8-2659

Swennes A.G., Buckley E.M., Parry N.M., Madden C.M., Garcia A., Morgan P.B., Astrofsky K.M., Fox J.G. 2012. Enzootic enteropathogenic Escherichia coli infection in laboratory rabbits. J. Clin. Microbiol., 50: 2353-2358. https://doi.org/10.1128/JCM.00832-12

Tanji Y., Shimada T., Yoichi M., Miyanaga K., Hori K., Unno H. 2004. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl. Microbiol. Biotechnol., 64: 270-274. https://doi.org/10.1007/s00253-003-1438-9

Trabulsi L.R., Keller R., Tardelli Gomes T.A. 2002. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis., 8: 508-513. https://doi.org/10.3201/eid0805.010385

Wang J., Hu B., Xu M., Yan Q., Liu S., Zhu X., Sun Z., Tao D., Ding L., Reed E., Gong J., Li Q.Q., Hu J. 2005. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med., 17: 347-355. https://doi.org/10.3892/ijmm.17.2.347

Wittebole X., De Roock S., Opal S.M. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5: 226-235. https://doi.org/10.4161/viru.25991

Zhang C., Li W., Liu W., Zou L., Yan C., Lu K., Ren H. 2013. T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl. Environ. Microbiol., 79: 5559-5565. https://doi.org/10.1128/AEM.01505-13

Zhang J., Li Z., Cao Z., Wang L., Li X., Li S., Xu Y. 2015. Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J. Anim. Sci. Biotechnol., 6: 39. https://doi.org/10.1186/s40104-015-0039-7

Zhang, S., Yang, G., Lai, Z., Wu, Q., and Zhang J. 2017. Prevalence and MLST molecular typing of Non-O157 diarrheagenic Escherichia coli isolated from retail foods in south China. Modern Food Sci. and Tech. 33: 1-8. [Chinese]