Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli
DOI:
https://doi.org/10.4995/wrs.2017.6395Keywords:
atypical enteropathogenic Escherichia coli, bacteriophage, phage therapy, rabbitAbstract
Pathogenic Escherichia coli (E. coli) is severely threatening the rabbit industry in China, and the concern over antibiotic-resistant bacteria has given rise to an urgent need for antibiotic alternatives. In this study, a member (ZRP1) of the Myoviridae family was isolated from rabbit faeces using a strain of rabbit atypical enteropathogenic E. coli (ZR1) as host. The one-step growth curve indicated that the latent period was around 25 to 30 min and the burst size was 144±31 plaque-forming unit/cell. The rate of phage-resistant mutation was 7×10–5±4×10–5. When the bacteriophage input at the multiplicity of infection (MOI) was 0.1, 1 or 10, the growth of host E. coli in broth was inhibited for 5 h. A single intravenous injection of ZRP1 at MOI 0.1, 1 or 10 significantly prolonged the survival time of rabbits which simultaneously received a lethal dose of ZR1.Downloads
References
Alam M., Akhter M.Z., Yasmin M., Ahsan C.R., Nessa, J. 2011. Local bacteriophage isolates showed anti- Escherichia coli O157:H7 potency in an experimental ligated rabbit ileal loop model. Can. J. Microbiol., 57: 408-415. https://doi.org/10.1139/w11-020
Cerveny K.E., DePaola A., Duckworth D.H., Gulig P.A. 2002. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun., 70: 6251-6262.
https://doi.org/10.1128/IAI.70.11.6251-6262.2002
Chacon-J. L.M., Lizeth Taylor, C., Carmen Valiente, A., Irene Alvarado, P., Ximena Cortes, B. 2012. A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples. Braz. J. Microbiol., 43: 1319-1326. https://doi.org/10.1590/S1517-83822012000400012
Chan B.K., Abedon S.T., Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Futute Microbiol., 8: 769-783. https://doi.org/10.2217/fmb.13.47
Chibani-Chennoufi S., Sidoti J., Bruttin A., Kutter E., Sarker S., and Brussow H. 2004. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob. Agents Chemother., 48: 2558-2569. https://doi.org/10.1128/AAC.48.7.2558-2569.2004
Cunha S., Mendes Â., Rego D., Meireles D., Fernandes R., Carvalho A., Martins Da Costa P. 2017. Effect of competitive exclusion in rabbits using an autochthonous probiotic. World Rabbit Sci., 25: 123-134. https://doi.org/10.4995/wrs.2017.4533
Han J.E., Kim J.H., Hwang S.Y., Choresca C.H. Jr., Shin S.P., Jun J.W., Chai J.Y., Park Y.H., Park S.C. 2013. Isolation and characterization of a Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis. Res. Vet. Sci. 95: 758-763. https://doi.org/10.1016/j.rvsc.2013.06.001
Henein A. 2013. What are the limitations on the wider therapeutic use of phage? Bacteriophage, 3: e24872. https://doi.org/10.4161/bact.24872
Huff W.E., Huff G.R., Rath N.C., Balog J.M., Donoghue A.M. 2005. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult. Sci., 84: 655-659. https://doi.org/10.1093/ps/84.4.655
Jamalludeen N., Johnson R.P., Friendship R., Kropinski A.M., Lingohr E.J., Gyles C.L. 2007. Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Vet. Microbiol., 124: 47-57. https://doi.org/10.1016/j.vetmic.2007.03.028
Kaper J.B., Nataro J.P., Mobley H.L. 2004. Pathogenic Escherichia coli. Nat. Rev. Mivrobiol., 2: 123-140. https://doi.org/10.1038/nrmicro818
Lee Y., Kim J., Park J. 2013. Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157:H7. Food Control, 34: 255-260. https://doi.org/10.1016/j.foodcont.2013.04.043
Mai Huong Ly-Chatain. 2014. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol., 5: 51. https://doi.org/10.3389/fmicb.2014.00051
Nataro J.P., Kaper J.B. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev., 11: 142-201.
O’Flynn G., Ross R.P., Fitzgerald G.F., Coffey A. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol., 70: 3417-3424. https://doi.org/10.1128/AEM.70.6.3417-3424.2004
Payne R.J., Jansen V.A. 2003. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinet., 42: 315-325. https://doi.org/10.2165/00003088-200342040-00002
Penteado A.S., Ugrinovich L.A., Blanco M., Blanco J.E., Mora A., Andrade J.R., Correa S.S., Pestana de Castro A.F. 2002. Serobiotypes and virulence genes of Escherichia coli strains isolated from diarrheic and healthy rabbits in Brazil. Vet. Microbiol., 89: 41-45.
https://doi.org/10.1016/S0378-1135(02)00148-7
Pouillot F., Chomton M., Blois H., Courroux C., Noelig J., Bidet P., Bingen E., Bonacorsi S. 2012. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother., 56: 3568-3575. https://doi.org/10.1128/AAC.06330-11
Skurnik M., Strauch E. 2006. Phage therapy: facts and fiction. Int. J. Med. Microbiol., 296: 5-14. https://doi.org/10.1016/j.ijmm.2005.09.002
Smith H.W., Huggins M.B. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. J. Gen. Microbiol., 129: 2659-2675. https://doi.org/10.1099/00221287-129-8-2659
Swennes A.G., Buckley E.M., Parry N.M., Madden C.M., Garcia A., Morgan P.B., Astrofsky K.M., Fox J.G. 2012. Enzootic enteropathogenic Escherichia coli infection in laboratory rabbits. J. Clin. Microbiol., 50: 2353-2358. https://doi.org/10.1128/JCM.00832-12
Tanji Y., Shimada T., Yoichi M., Miyanaga K., Hori K., Unno H. 2004. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl. Microbiol. Biotechnol., 64: 270-274. https://doi.org/10.1007/s00253-003-1438-9
Trabulsi L.R., Keller R., Tardelli Gomes T.A. 2002. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis., 8: 508-513. https://doi.org/10.3201/eid0805.010385
Wang J., Hu B., Xu M., Yan Q., Liu S., Zhu X., Sun Z., Tao D., Ding L., Reed E., Gong J., Li Q.Q., Hu J. 2005. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med., 17: 347-355. https://doi.org/10.3892/ijmm.17.2.347
Wittebole X., De Roock S., Opal S.M. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5: 226-235. https://doi.org/10.4161/viru.25991
Zhang C., Li W., Liu W., Zou L., Yan C., Lu K., Ren H. 2013. T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl. Environ. Microbiol., 79: 5559-5565. https://doi.org/10.1128/AEM.01505-13
Zhang J., Li Z., Cao Z., Wang L., Li X., Li S., Xu Y. 2015. Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J. Anim. Sci. Biotechnol., 6: 39. https://doi.org/10.1186/s40104-015-0039-7
Zhang, S., Yang, G., Lai, Z., Wu, Q., and Zhang J. 2017. Prevalence and MLST molecular typing of Non-O157 diarrheagenic Escherichia coli isolated from retail foods in south China. Modern Food Sci. and Tech. 33: 1-8. [Chinese]
Downloads
Published
Issue
Section
License
This journal is licensed under a "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)".