Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits
DOI:
https://doi.org/10.4995/wrs.2017.5770Keywords:
zinc, growth performance, health, body Zn concentration, intestinal morphology, rabbitAbstract
This study was conducted to evaluate the effect of dietary organic zinc (Zn) sources on growth performance, the incidence of diarrhoea, serum and tissue Zn concentration, and intestinal morphology in growing rabbits. A total of 120 New Zealand White rabbits aged 35 d and with an initial body weight of 755±15 g, were randomly divided into 4 treatment groups for a 49 d feeding trial. Dietary treatments were designed with different Zn supplements as follows: (1) Control group: 80 mg/kg Zn as ZnSO<sub>4</sub>; (2) ZnLA group: 80 mg/kg Zn as Zn lactate; (3) ZnMet group: 80 mg/kg Zn as Zn methionine; (4) ZnGly group: 80 mg/kg Zn as Zn glycine. The results showed that, when compared with rabbits fed ZnSO<sub>4</sub>, supplementation with ZnLA improved (P<0.05) growth performance and led to a lower (P<0.01) incidence of diarrhoea. ZnLA supplement increased the liver Zn concentration (58.97 vs. 46.59 mg/g; P<0.05) compared with rabbits fed ZnSO<sub>4</sub>. Supplementing with ZnLA increased duodenum villi height (681.63 vs. 587.14 μm, P<0.05) and decreased duodenum crypt depth (141.69 vs. 168.91 μm; P<0.05) when compared to that of the control group. However, experimental results obtained ZnMet and ZnGly supplementation were no significantly different to ZnSO<sub>4</sub>, except that feeding ZnMet led to higher (P<0.05) Zn concentrations in serum and liver than rabbits fed ZnSO<sub>4</sub>. The results indicated that supplementation with 80 mg/kg Zn as ZnLA could improve growth performance, increase liver Zn concentration and enhance duodenum morphology, while reducing the incidence of diarrhoea in growing rabbits.
Downloads
References
Amen M.H.M., Daraji H.J.A. 2011. Influence of dietary supplementation with zinc on sex hormones concentrations of broiler breeder chickens. Pakistan J. Nutr., 10:1089-1093. doi:10.3923/pjn.2011.1089.1093
Baker D.H., Halpin K.M. 1988. Zinc antagonizing effects of fish meal, wheat bran and a corn-soybean meal mixture when added to a phytate-and fiber-free casein-dextrose diet. Nutr. Res., 8: 213-218. doi:10.1016/S0271-5317(88)80025-3
Buddle J.R., Bolton J.R. 1992. The pathophysiology of diarrhoea in pigs. Pig News Inform., 13: 41-45.
Buff C.E., Bollinger D.W., Ellersieck M.R., Brommelsiek W.A., Veum T.L. 2005. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J. Anim. Sci., 83: 2380-2386. doi:10.2 527/2005.83102380x
Carlson M.S., Hoover S.L., Hill G.M., Link J.E., Turk J.R. 1998. Effect of pharmacological zinc on intestinal metallothionein concentration and morphology in the nursery pig. J. Anim. Sci., 76: 53.
Case C.L., Carlson M.S. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J. Anim. Sci., 80: 1917-1924. doi:10.2527/2002.8071917x
Downs K.M., Hess J.B., Macklin K.S., Norton R.A. 2000. Dietary zinc complexes and vitamin E for reducing cellulitis incidence in broilers. J. Appl. Poult. Res., 9: 319-323. doi:10.1093/japr/9.3.319
Ferreira W.M., Cavalcante S.G., Naranjo A.P., Santiago G.S. 2002. Bioavailability of different zinc sources for rabbits. Arq. Bras. Med. Vet. Zootec., 54: 636-642. doi:10.1590/S0102-09352002000600013
Gaither L.A., Eide D.J. 2001. Eukaryotic zinc transporters and their regulation. BioMetals, 14: 251-270. doi:10.1023/A:1012988914300
Gíslason J., Iyer S., Hutchens T.W., Bo L. 1993. Lactoferrin receptors in piglet small intestine: lactoferrin binding properties, ontogeny, and regional distribution in the gastrointestinal tract. J. Nutr. Biochem., 4: 528-533. doi:10.1016/0955-2863(93)90089-F
Hahn J.D., Baker D.H. 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci., 71: 3020-3024. doi:10.2527/1993.71113020x
Hendy H.A.E., Yousef M.I., El-Naga N.I.A. 2001. Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats. Toxicology, 167: 163-170. doi:10.1016/S0300-483X(01)00373-0
Hill G.M., Mahan D.C., Carter S.D., Cromwell G.L., Ewan R.C., Harrold R.L., Lewis A.J., Miller P.S., Shurson G.C., Veum T.L. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. J. Anim. Sci., 79: 934-941. doi:10.2527/2001.794934x
Hossain S., Bertechini A.G. 1993. Requirement of zinc for growing rabbits. Arq. Bras. Med. Vet. Zootec., 45: 323-329.
Jia G., Yan J.Y., Cai J.Y., Wang K.N. 2010. Effects of encapsulated and non-encapsulated compound acidifiers on gastrointestinal pH and intestinal morphology and function in weaning piglets. J. Anim. Feed. Sci., 19: 81-92. doi:10.22358/jafs/66272/2010
Maret W., Sandstead H.H. 2006. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace. Elem. Med. Biol., 20: 3-18. doi:10.1016/j.jtemb.2006.01.006
Mateos G.G., Rebollar P.G., de Blas C. 2010. Minerals, Vitamins and Additives. In: de Blas C., Wiseman J. (ed). The nutrition of the rabbit, CABI Publishing, Wallingford, UK, 119-150. doi:10.1079/9781845936693.0119
McCully G.A., Hill G.M., Link J.E., Weaver R.L., Carlson M.S., Rozeboom D.W. 1995. Evaluation of zinc sources for the newly weaned pig. J. Anim. Sci., 73: 72.
Nessrin S., Abdel-Khalek A.M., Gad S.M. 2012. Effect of supplemental zinc, magnesium or iron on performance and some physiological traits of growing rabbits. Asian J. Poul. Sci., 6: 23-30. doi:10.3923/ajpsaj.2012.23.30
Nutritional Research Council (NRC). 1977. Nutrient requirements of rabbits. National Academies of Science, Washington DC., USA.
Pluske J.R., Hampson D.J., Williams I.H. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest Prod. Sci., 51: 215-236. doi:10.1016/S0301-6226(97)00057-2
Salim H.M., Lee H.R., Jo C., Lee S.K., Lee B.D. 2012. Effect of sex and dietary organic zinc on growth performance, carcass traits, tissue mineral content, and blood parameters of broiler chickens. Biol. Trace. Elem. Res., 147: 120-129. doi:10.1007/s12011-011-9282-8
Schell T.C., Kornegay E.T. 1996. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J. Anim. Sci., 74: 1584-1593. doi:10.2527/1996.7471584x
Smith J.W., Tokach M.D., Goodband R.D., Nelssen J.L., Richert B.T. 1997. Effects of the interrelationship between zinc oxide and copper sulfate on growth performance of early-weaned pigs. J. Anim. Sci., 75: 1861-1866. doi:10.2527/1997.7571861x
Tang Z.R., Yin Y.L., Zhang Y.M., Huang R.L., Sun Z.H., Li T.J., Chu W.Y., Kong X.F., Li L.L., Geng M.M., Tu Q. 2009. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Br. J. Nutr., 101: 998-1005. doi:10.1017/S0007114508055633
Wang K.K., Cui H.W., Sun J.Y., Qian L.C., Weng X. 2012. Effects of zinc on growth performance and biochemical parameters of piglets. Turk. J. Vet. Ani. Sci., 36: 519-526. doi:10.3906/vet-1010-553
Wang Y., Tang J.W., Ma W.Q., Feng J., Feng J. 2010. Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol. Trace. Elem. Res., 133: 325-334. doi:10.1007/s12011-009-8437-3
Ward T.L., Asche G.L., Louis G.F., Pollmann D.S. 1996. Zincmethionine improves growth performance of starter pigs. J Anim. Sci., 74: 303.
Wedekind K.J., Baker D.H. 1990. Zinc bioavailability in feedgrade sources of zinc. J. Anim. Sci., 68: 684-689. doi:10.2527/1990.683684x
Wedekind K.J., Hortin A.E., Baker D.H. 1992. Methodology for assessing zinc bioavailability: efficacy estimates for zincmethionine, zinc sulfate, and zinc oxide. J. Anim. Sci., 70: 178-187. doi:10.2527/1992.701178x
Zhang G.W., Zhang W.X., Chen S.Y., Yoshimura Y., Isobe N., Lai S.J. 2013. Dectin-1 gene polymorphism is associated with susceptibility to nonspecific digestive disorders and cytokine expression in rabbits. J. Anim. Sci., 91: 4051-4059. doi:10.2527/jas.2013-6461
Downloads
Published
Issue
Section
License
This journal is licensed under a "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)".