The lipopolysaccharide from Escherichia coli O127:B8 induces inflammation and motility disturbances in rabbit ileum
DOI:
https://doi.org/10.4995/wrs.2017.5160Keywords:
intestine, motility, lipopolysaccharide, toll-like receptor 4, sepsis, rabbitAbstract
The aim of this work was to evaluate the effects of lipopolysaccharide (LPS) from Escherichia coli O127:B8 on the expression of toll-like receptor 4 (TLR4), the histology, and motor function in rabbit ileum. Rabbits were injected intravenously with saline or LPS (100 μg/kg, 2 h). The mRNA expression and localization of TLR4 were determined by reverse transcriptase-PCR and immunofluorescence, respectively. Histological damage induced by LPS was evaluated in sections of ileum stained with haematoxylin and eosin. Contractility studies of ileum were performed in an organ bath. The mRNA expression of TLR4 decreased in the muscular but not in the mucosal layer of rabbits treated with LPS. TLR4 was localised in both the mucosal and muscular layers of rabbit ileum. LPS induced intestinal inflammation and altered the spontaneous contractions and the serotonin-, acetylcholine- and KCl-induced contractions. In conclusion, LPS from E. coli O127:B8 induced a decrease in the mRNA expression of TLR4, an inflammatory response, and changes in the contractility of rabbit ileum.
Downloads
References
Arribas B., Rodríguez-Cabezas M.E., Camuesco D., Comalada M., Bailón E., Utrilla P., Nieto A., Concha A., Zarzuelo A., Gálvez J. 2009. A probiotic strain of Escherichia coli, Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. Br. J. Pharmacol., 157: 1024-1033. https://doi.org/10.1111/j.1476-5381.2009.00270.x
Cooper M.L., Walters E.W., Keller H.M. 1955. Detection of a new serotype of Escherichia coli, E. coli O127:B8, associated with acute diarrhea in infants. J. Bacteriol., 69: 689-694.
Chen C., Zibiao H., Ming Z., Shiyi C., Ruixia L., Jie W., SongJia L. 2014. Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. Dev. Comp. Immunol., 46: 341-348. https://doi.org/10.1016/j.dci.2014.05.008
Dogan M.D., Ataoglu H., Akarsu E.S. 2000. Effects of different serotypes of Escherichia coli lipopolysaccharides on body temperature in rats. Life Sci., 67: 2319-2329. https://doi.org/10.1016/S0024-3205(00)00821-3
Germani Y., Brethes B., Begaud E., Moreau J.P. 1985. Comparative study of adherence to rabbit enterocytes, presence of colonization factors CFA/I and CFA/II and toxinogenesis of 55 strains of Escherichia coli. Ann. Inst. Pasteur Mic., 136A: 203-212. https://doi.org/10.1016/S0769-2609(85)80059-4
Gonzalo S., Grasa L., Arruebo M.P., Plaza M.A., Murillo M.D. 2010. Inhibition of p38 MAPK improves intestinal disturbances and oxidative stress induced in a rabbit endotoxemia model. Neurogastroenterol. Motil., 22: 564-572, e123. https://doi.org/10.1111/j.1365-2982.2009.01439.x
Gonzalo S., Grasa L., Arruebo M.P., Plaza M.A., Murillo M.D. 2011a. Extracellular signal-regulated kinase (ERK) is involved in LPS-induced disturbances in intestinal motility. Neurogastroenterol. Motil., 23: e80-90. https://doi.org/10.1111/j.1365-2982.2010.01632.x
Gonzalo S., Grasa L., Arruebo M.P., Plaza M.A., Murillo M.D. 2011b. Lipopolysaccharide-induced intestinal motility disturbances are mediated by c-Jun NH2-terminal kinases. Dig. Liver Dis., 43: 277-285. https://doi.org/10.1016/j.dld.2010.10.009
Gonzalo S., Grasa L., Hernández L.V., Arruebo M.P., Plaza M.A., Murillo M.D. 2012. Mitogen activated protein kinases blockade improves lipopolysaccharide-induced ileal motor disturbances. Rev. Esp. Enferm. Dig., 104: 305-309. https://doi.org/10.4321/S1130-01082012000600004
Gonzalo S., Valero M.S., Martínez de Salinas F., Vergara C., Arruebo M.P., Plaza M.A., Murillo M.D., Grasa L. 2015. Roles of Toll-Like Receptor 4, IkappaB Kinase, and the Proteasome in the Intestinal Alterations Caused by Sepsis. Dig. Dis. Sci., 60: 1223-1231. https://doi.org/10.1007/s10620-014-3418-6
Hamano N., Inada T., Iwata R., Asai T., Shingu K. 2007. The alpha2-adrenergic receptor antagonist yohimbine improves endotoxin-induced inhibition of gastrointestinal motility in mice. Br. J. Anaesth., 98: 484-490. https://doi.org/10.1093/bja/aem011
Hernández L.V., Gonzalo S., Castro M., Arruebo M.P., Plaza M.A., Murillo M.D., Grasa L. 2011. Nuclear factor kappaB is a key transcription factor in the duodenal contractility alterations induced by lipopolysaccharide. Exp. Physiol., 96: 1151-1162. https://doi.org/10.1113/expphysiol.2011.060830
Huang J.X., Azad M.A., Yuriev E., Baker M.A., Nation R.L., Li J., Cooper M.A., Velkov T. 2012. Molecular Characterization of Lipopolysaccharide Binding to Human alpha-1-Acid Glycoprotein. J. Lipids, 2012: 475153. https://doi.org/10.1155/2012/475153
Imaeda H., Yamamoto H., Takaki A., Fujimiya M. 2002. In vivo response of neutrophils and epithelial cells to lipopolysaccharide injected into the monkey ileum. Histochem. Cell Biol., 118: 381-388. https://doi.org/10.1007/s00418-002-0458-3
Li Z., Zhang X., Zhou H., Liu W., Li J. 2016. Exogenous S-nitrosoglutathione attenuates inflammatory response and intestinal epithelial barrier injury in endotoxemic rats. J. Trauma Acute Care Surg., 80: 977-984. https://doi.org/10.1097/TA.0000000000001008
Lyu W., Qin W., Zhang J., Shen W., Wang X., Sun B. 2015. Inhibitory effects of Kukoamine B on the inflammatory response of small intestine in lipopolysaccharide-induced septic mice and its potential mechanisms. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 27: 121-126. https://doi.org/10.3760/cma.j.issn.2095-4352.2015.02.009
Rebollar E., Arruebo M.P., Plaza M.A., Murillo M.D. 2002. Effect of lipopolysaccharide on rabbit small intestine muscle contractility in vitro: role of prostaglandins. Neurogastroenterol. Motil., 14: 633-642. https://doi.org/10.1046/j.1365-2982.2002.00364.x
Rebollar E., Guerrero-Lindner E., Arruebo M.P., Plaza M.A., Murillo M.D. 2003. Role of prostaglandins in lipopolysaccharide effects on K+-induced contractions in rabbit small intestine. Acta Physiol. Scand., 179: 299-307. https://doi.org/10.1046/j.0001-6772.2003.01189.x
Sanchez-Lemus E., Murakami Y., Larrayoz-Roldan I.M., Moughamian A.J., Pavel J., Nishioku T., Saavedra J.M. 2008. Angiotensin II AT1 receptor blockade decreases lipopolysaccharide-induced inflammation in the rat adrenal gland. Endocrinology, 149: 5177-5188. https://doi.org/10.1210/en.2008-0242
Stenutz R., Weintraub A., Widmalm G. 2006. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol. Rev., 30: 382-403. https://doi.org/10.1111/j.1574-6976.2006.00016.x
Tadros T., Traber D.L., Heggers J.P., Herndon D.N. 2000. Angiotensin II inhibitor DuP753 attenuates burn- and endotoxin-induced gut ischemia, lipid peroxidation, mucosal permeability, and bacterial translocation. Ann. Surg., 231: 566-576. https://doi.org/10.1097/00000658-200004000-00017
Takeda K., Akira S. 2004. TLR signaling pathways. Semin. Immunol., 16: 3-9. https://doi.org/10.1016/j.smim.2003.10.003
Wafa K., Lehmann C., Wagner L., Drzymulski I., Wegner A., Pavlovic D. 2015. Desmopressin improves intestinal functional capillary density and decreases leukocyte activation in experimental endotoxemia. Microvasc. Res., 97: 98-104. https://doi.org/10.1016/j.mvr.2013.09.001
Downloads
Published
Issue
Section
License
This journal is licensed under a "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)".