Studying the expression patterns of OCT4 and SOX2 proteins in regenerating rabbit ear tissue


  • A. S. Javanmard Ferdowsi University of Mashhad
  • A. R. Bahrami Ferdowsi University of Mashhad
  • Z. Mahmoudi Ferdowsi University of Mashhad
  • M. Saeinasab Ferdowsi University of Mashhad
  • N. Mahdavi-Shahri Ferdowsi University of Mashhad
  • M. Moghaddam Matin Ferdowsi University of Mashhad



regenerating rabbit ear, OCT4, SOX2, adult stem cells


Epimorphic regeneration in New Zealand rabbit ear is an interesting example of mammalian wound healing in which blastema formation is involved in replacement of injured tissues. It has been suggested that isolated cells from regenerating rabbit ear possess stem-like properties. In this study, we aimed to determine the expression of stemness markers, OCT4 and SOX2 proteins, in regenerating rabbit tissues by immunohistochemistry. Results indicated that both proteins could be detected in epithelial cells, hair follicle cells and perichondrium cells. Expression pattern analysis of OCT4 and SOX2 proteins showed no clear differences between regenerative and non-regenerative control tissues. According to several reports of OCT4 and SOX2 proteins expression in adult stem cells, it could be proposed that OCT4 and SOX2 expressing cells in regenerating rabbit ear tissues are progenitor/adult stem cells which are resident in these tissues, and other markers should be used for detection of blastema cells.


Download data is not yet available.

Author Biographies

A. S. Javanmard, Ferdowsi University of Mashhad

Department of Biology

Ph.D Student

A. R. Bahrami, Ferdowsi University of Mashhad

Department of Biology

Molecular Biotechnology Research Group.Institute of Biotechnology


Z. Mahmoudi, Ferdowsi University of Mashhad

Department of Biology

Graduate MSc Student

M. Saeinasab, Ferdowsi University of Mashhad

Department of Biology

Ph.D Student

N. Mahdavi-Shahri, Ferdowsi University of Mashhad

Department of Biology

Molecular Biotechnology Research Group.Institute of Biotechnology

M. Moghaddam Matin, Ferdowsi University of Mashhad

Department of Biology

Molecular Biotechnology Research Group.Institute of Biotechnology



Allen S.P., Maden M., Price J.S. 2002. A role for retinoic acid in regulating the regeneration of deer antlers. Dev Biol., 251: 409-423. doi:10.1006/dbio.2002.0816

Alonso L., Fuchs E. 2003. Stem cells in the skin: waste not, Wnt not. Genes Dev., 17: 1189-1200. doi:10.1101/gad.1086903

Avilion A.A., Nicolis S.K., Pevny L.H., Perez L., Vivian N., Lovell-Badge R. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev., 17: 126-140. doi:10.1101/gad.224503

Bellairs A.D.A., Bryant S.V. 1985. Autotomy and regeneration in reptiles. In: Gans C and Billet F (Eds), Biology of the reptilia, J. Wiley & Sons, New York, USA, 301-410.

Bhartiya D., Kasiviswanathan S., Unni S.K., Pethe P., Dhabalia J.V., Patwardhan S., Tongaonkar H.B. 2010. Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J. Histochem. Cytochem., 58: 1093-1106. doi:10.1369/jhc.2010.956870

Butler E.G. 1935. Studies on limb regeneration in Xâ€rayed amblystoma larvae. Anat Rec., 62: 295-307. doi:10.1002/ar.1090620308

Carlson B.M. 2011. Principles of regenerative biology. Academic Press. Elsevier, London, UK, 1-379.

Cauffman G., Van de Velde H., Liebaers I., Van Steirteghem A. 2005. Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod., 11: 173-181. doi:10.1093/molehr/gah155

Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., Smith A. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113: 643-655. doi:10.1016/s0092-8674(03)00392-1

Clark L.D., Clark R.K., Heber-Katz E. 1998. A new murine model for mammalian wound repair and regeneration. Clin. Immunol. Immunopathol., 88: 35-45. doi:10.1006/clin.1998.4519

Driskell R.R., Giangreco A., Jensen K.B., Mulder K.W., Watt. F.M. 2009. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development, 136: 2815-2823. doi:10.1242/dev.038620

Dudakovic, A., Camilleri, E., Riester, S.M., Lewallen, E.A., Kvasha, S., Chen, X., Radel, D.J., Anderson, J.M., Nair, A.A., Evans, J.M., Krych, A.J., Smith, J., Deyle, D.R., Stein, J.L., Stein, G.S., Im, H.J., Cool, S.M., Westendorf, J.J., Kakar, S., Dietz, A.B., van Wijnen, A.J. 2014. Highâ€resolution molecular validation of selfâ€renewal and spontaneous differentiation in clinicalâ€grade adiposeâ€tissue derived human mesenchymal stem cells. J. Cell Biochem., 115: 1816-1828. doi:10.1002/jcb.24852

Ferguson M.W., O’Kane S. 2004. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos. Trans. R. Soc. Lond. B Biol. Sci., 359: 839-850. doi:10.1098/rstb.2004.1475

Goss R.J. 1987. Why mammals don’t regenerate–or do they. News Physiol. Sci., 2: 112-115.

Goss R.J., Grimes L.N. 1975. Epidermal downgrowths in regenerating rabbit ear holes. J. Morphol., 146: 533-542. doi:10.1002/jmor.1051460408

Goss R.J., Holt R. 1992. Epimorphic vs. tissue regeneration in Xenopus forelimbs. J. Exp. Zool., 261: 451-457. doi:10.1002/jez.1402610412

Gourevitch D., Clark L., Chen P., Seitz A., Samulewicz S.J., Heber-Katz E. 2003. Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Dev. Dyn., 226: 377-387. doi:10.1002/dvdy.10243

Greco S.J., Liu K., Rameshwar P. 2007. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25: 3143-3154. doi:10.1634/stemcells.2007-0351

Gurley K.A., Alvarado A.S. 2008. Stem cells in animal models of regeneration. StemBook, Cambridge (MA): Harvard Stem Cell Institute, 1-23. doi:10.3824/stembook.1.32.1

Heber-Katz E. 1999.The regenerating mouse ear. In: Seminars in cell & developmental biology, Academic Press, Vol. 10, 415-419. doi:10.1006/scdb.1999.0328

Herr W., Cleary M.A. 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNAbinding domain. Genes Dev., 9: 1679-1693. doi:10.1101/gad.9.14.1679

Izadpanah R., Trygg C., Patel B., Kriedt C., Dufour J., Gimble J.M., Bunnell B.A. 2006. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell Biochem., 99: 1285-1297. doi:10.1002/jcb.20904

Kioke T., Wakabayashi T., Mori T., Takamori Y., Hirahara Y., Yamada, H. 2014. Sox2 in the adult rat sensory nervous system. Histochem. Cell Biol., 141: 301-309. doi:10.1007/s00418-013-1158-x

Kobayashi S., Takebe T., Zheng Y.W., Mizuno M., Yabuki Y., Maegawa J., Taniguchi H. 2011. Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS One, 6: e26393. doi:10.1371/journal.pone.0026393.

Kragl M., Knapp D., Nacu E., Khattak S., Maden M., Epperlein H.H., Tanaka E.M. 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature, 460: 60-65. doi:10.1038/nature08152

Lajtha L., Gilbert C., Porteous D., Alexanian R. 1964. Kinetics of a bone-marrow stem-cell population. Ann. NY Acad. Sci., 113:742-752. doi:10.1111/j.1749-6632.1964.tb40701.x

Lee-Liu D., Moreno M., Almonacid L.I., Tapia V.S., Muñoz R., Marées J., Gaete M., Melo F., Larraín J. 2014. Genomewide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev., 9: 12. doi: 10.1186/1749-8104-9-12

Mahmoudi Z., Matin M.M., Saeinasab M., Nakhaei-Rad S., Mirahmadi M., Mahdavi Shahri N., Bahrami A.R. 2011. Blastema cells derived from rabbit ear show stem cell characteristics. J. Cell Mol. Res., 3: 25-31.

Metcalfe A.D., Ferguson M.W. 2005. Harnessing wound healing and regeneration for tissue engineering. Biochem. Soc. Trans., 33: 413-417. doi:10.1042/BST0330413

Metcalfe A.D., Ferguson M.W. 2008. Skin stem and progenitor cells: using regeneration as a tissue-engineering strategy. Cell Mol. Life Sci., 65: 24-32. doi:10.1007/s00018-007-7427-x

Morgan T.H. 1901. Regeneration and liability to injury. Science, 14: 235-248. doi:10.1126/science.14.346.235

Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Schöler H., Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95: 379-391. doi:10.1016/S0092-8674(00)81769-9

Nie Z., Hu G., Wei G., Cui K., Yamane A., Resch W., Wang R., Green D.R., Tessarollo L., Casellas R., Zhao K., Levens D. 2012. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell, 151: 68-79. doi:10.1016/j.cell.2012.08.033

O’Kane S., Ferguson M.W. 1997. Transforming growth factor betas and wound healing. Int. J. Biochem. Cell Biol., 29: 63-78. doi:10.1016/S1357-2725(96)00120-3

Okubo T., Clark C. Hogan B.L. 2009. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells. 27: 442-450.


Que J., Luo X., Schwartz R.J., Hogan B.L. 2009. Multiple roles for Sox2 in the developing and adult mouse trachea. Development, 136: 1899-1907. doi:10.1242/dev.034629

Rajnoch C., Ferguson S., Metcalfe A.D., Herrick S.E., Willis H.S., Ferguson M.W. 2003. Regeneration of the ear after wounding in different mouse strains is dependent on the severity of wound trauma. Dev. Dyn., 226: 388-397. doi:10.1002/dvdy.10242

Redvers R.P., Li A., Kaur P. 2006. Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proc. Natl. Acad. Sci., 103: 13168-13173. doi:10.1073/pnas.0602579103

Rheinwald J.G., Green H. 1975. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6: 331-343. doi:10.1016/S0092-8674(75)80001-8

Rheinwald J.G., Green H. 1977. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature, 265: 421-424. doi:10.1038/265421a0

Riekstina U., Cakstina I., Parfejevs V., Hoogduijn M., Jankovskis G., Muiznieks I., Muceniece R., Ancans J. 2009. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. Rep., 5: 378-386. doi:10.1007/s12015-009-9094-9

Rinkevich Y., Lindau P., Ueno H., Longaker M.T., Weissman I.L. 2011. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature, 476: 409-413. doi:10.1038/nature10346

Sánchez Alvarado A. 2000. Regeneration in the metazoans: why does it happen? Bioessays, 22: 578-590. doi:10.1002/(SICI)1521-1878(200006)22:6%3C578::AIDBIES11%3E3.0.CO;2-%23

Sarkar A., Hochedlinger K. 2013. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell, 12: 15-30. doi:10.1016/j.stem.2012.12.007

Shim J.H., Park J.Y., Lee M.G., Kang H.H., Lee T.R., Shin D.W. 2013. Human dermal stem/progenitor cell-derived conditioned medium ameliorates ultraviolet a-induced damage of normal human dermal fibroblasts. PLoS One, 8: e67604. doi:10.1371/journal.pone.0067604

Singer A.J., Clark R.A. 1999. Cutaneous wound healing. N. Engl. J. Med., 341: 738-746. doi:10.1056/NEJM199909023411006

Soufi A., Donahue G., Zaret K.S. 2012. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell, 151: 994-1004. doi:10.1016/j.cell.2012.09.045

Stenn K.S., Cotsarelis G. 2005. Bioengineering the hair follicle: fringe benefits of stem cell technology. Curr. Opin. Biotechnol., 16: 493-497. doi:10.1016/j.copbio.2005.08.002

Tai M.H., Chang C.C., Kiupel M., Webster J.D., Olson L.K., Trosko J.E. 2005. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis, 26: 495-502. doi:10.1093/carcin/bgh321

Takahashi K., Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663-676. doi:10.1016/j.cell.2006.07.024

Táncos Z., Bock I., Nemes C., Kobolák J., Dinnyés, A. 2015. Cloning and characterization of rabbit POU5F1, SOX2, KLF4, C-MYC and NANOG pluripotency-associated genes. Gene, 566: 148-157. doi:10.1016/j.gene.2015.04.034

Taranova O.V., Magness S.T., Fagan B.M., Wu Y., Surzenko N., Hutton S.R., Pevny L.H. 2006. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev., 20: 1187-1202. doi:10.1101/gad.1407906

Togo T., Utani A., Naitoh M., Ohta M., Tsuji Y., Morikawa N., Nakamura M., Suzuki S. 2006. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab. Invest., 86: 445-457. doi:10.1038/labinvest.3700409

Tweedell K.S. 2010. The urodele limb regeneration blastema: the cell potential. Scientific World J., 10: 954-971. doi:10.1100/tsw.2010.115

Vorontsova M., Liosner L. 1960. Asexual Propagation and Regeneration (F. Billett, ed.). Pergamon Press, London. (Translated from the Russian by PM Allen).

Warthemann R., Eildermann K., Debowski K., Behr R. 2012. Falsepositive antibody signals for the pluripotency factor OCT4A (POU5F1) in testis-derived cells may lead to erroneous data and misinterpretations. Mol. Hum. Reprod., 18: 605-612. doi:10.1093/molehr/gas032

Williams-Boyce P.K., Daniel, J.C. 1986. Comparison of ear tissue regeneration in mammals. J. Anat., 149: 55-63.

Yu H., Fang D., Kumar S.M., Li L., Nguyen T.K., Herlyn M., Xu X. 2006. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am. J. Pathol., 168: 1879-1888. doi:10.2353/ajpath.2006.051170

Zasloff M. 2011. Observations on the remarkable (and mysterious) wound-healing process of the bottlenose dolphin. J. Invest. Dermatol., 131: 2503-2505. doi:10.1038/jid.2011.220

Zheng Y., Du X., Wang W., Boucher M., Parimoo S., Stenn K. 2005. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J. Invest. Dermatol., 124: 867-876. doi:10.1111/j.0022-202x.2005.23716.x