Descriptive analysis of the environmental impact of intensive rabbit production

Davi Savietto

https://orcid.org/0000-0002-1833-5832

France

Institut National de la Recherche Agronomique image/svg+xml

GenPhySE, Université de Toulouse, INRAE

|

Accepted: 2024-10-18

|

Published: 2024-12-30

DOI: https://doi.org/10.4995/wrs.2024.22642
Funding Data

Downloads

Keywords:

Oryctolagus cuniculus, greenhouse gas, water use, air quality, biodiversity loss

Supporting agencies:

This research was not funded

Abstract:

This descriptive literature review presents some elements that allow us to quantify the main contributions of rabbit farming to global warming, pollution (mostly nitrogen losses, airborne particulate matter), water footprint and biodiversity loss. As the majority of meat rabbits farmed in the world are raised in indoor cage systems, most studies only cover this production system. A single attempt has been made to quantify the environmental impact of an alternative system, based on rabbits grazing under photovoltaic panels. Although it provides some insights into possible alternatives, the results obtained are not based on real data. Regarding the contribution of rabbit production to global warming, the estimations of greenhouse gas emissions ranged from 3.13 to 3.25 kg of CO2 eq. per growing rabbit over a 35-d period. No estimates are available for the whole system (all animal categories). Pollution associated with nitrogen losses varied between 40.1 and 59.1 g of N per kg of liveweight gain. Air pollution related to the airborne particulate matter (10 micron) varied from 0.082 to 0.045 mg per m3, and there was no data available on the water footprint, which is likely to be between those observed for poultry and pig production. For biodiversity loss, there are no studies on the impact of rabbit production on wild life. This communication ends with a brief discussion of the possible alternatives and presents some technical perspectives for the rabbit sector.

Show more Show less

References:

Adell E., Calvet S., Torres A.G., Cambra-López M. 2012a. Particulate matter concentrations and emissions in rabbit farms. World Rabbit Sci., 20: 1-12. https://doi.org/10.4995/wrs.2012.1035

Adell E., Estellés F., Torres A.G., Cambra-López M. 2012b. Morphology, chemical composition, and bacterial concentration of airborne particulate matter in rabbit farms. World Rabbit Sci., 20: 241-252. https://doi.org/10.4995/wrs.2012.1211

Alkemade R., Reid R.S., van den Berg M., de Leeuw J., Jeuken M. 2013. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proc. Natl. Acad. Sci., 110: 20900-20905. https://doi.org/10.1073/pnas.1011013108

Atkinson D., Watson C.A. 1996. The environmental impact of intensive systems of animal production in the lowlands. Anim. Sci., 63: 353-361. https://doi.org/10.1017/S135772980001523X

Biagini D., Montoneri E., Rosato R., Lazzaroni C., Dinuccio E. 2021. Reducing ammonia and GHG emissions from rabbit rearing through a feed additive produced from green urban residues. Sustain. Prod. Consum., 27: 1-9. https://doi.org/10.1016/j.spc.2020.10.003

Bokkers E.A.M., de Boer I.J.M. 2009. Economic, ecological, and social performance of conventional and organic broiler production in the Netherlands. Br. Poult. Sci., 50: 546-557. https://doi.org/10.1080/00071660903140999

Broom D.M., Galindo F.A., Murgueitio E. 2013. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B Biol. Sci., 280: 20132025. https://doi.org/10.1098/rspb.2013.2025

Calvet S., Estellés F., Hermida B., Blumetto O., Torres A.G. 2008. Experimental balance to estimate efficiency in the use of nitrogen in rabbit breeding. World Rabbit Sci., 16: 205-211. https://doi.org/10.4995/wrs.2008.615

Calvet S., Cambra-López M., Estellés F.E., Torres A.G. 2011. Characterization of the indoor environment and gas emissions in rabbit farms. World Rabbit Sci., 19: 49-61. https://doi.org/10.4995/wrs.2011.802

Cambra-López M., Aarnink A.J.A., Zhao Y., Calvet S., Torres A.G. 2010. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut., 158: 1-17. https://doi.org/10.1016/j.envpol.2009.07.011

Cesari V., Zucali M., Bava L., Gislon G., Tamburini A., Toschi I. 2018. Environmental impact of rabbit meat: The effect of production efficiency. Meat Sci., 145: 447-454. https://doi.org/10.1016/j.meatsci.2018.07.011

Clauss M., Dittmann M.T., Vendl C., Hagen K.B., Frei S., Ortmann S., Müller D.W.H., Hammer S., Munn A.J., Schwarm A., Kreuzer M. 2020. Review: comparative methane production in mammalian herbivores. Animal, 14: s113-s123. https://doi.org/10.1017/S1751731119003161

Conway G.R. 1987. The properties of agroecosystems. Agric. Syst., 24: 95-117. https://doi.org/10.1016/0308-521X(87)90056-4

Delibes-Mateos M., Redpath S.M., Angulo E., Ferreras P., Villafuerte R. 2007. Rabbits as a keystone species in southern Europe. Biol. Conserv., 137: 149-156. https://doi.org/10.1016/j.biocon.2007.01.024

Delibes-Mateos M., Delibes M., Ferreras P., Villafuerte R. 2008. Key role of European rabbits in the conservation of the western Mediterranean basin hotspot. Conserv. Biol., 22: 1106-1117. https://doi.org/10.1111/j.1523-1739.2008.00993.x

Diamond D., Ashwood L., Franco A., Kuehn L., Imlay A., Boutwell C. 2022. Agricultural exceptionalism, environmental injustice, and U.S. right to farm laws. Envir. Law Report., 52: 10727-10748.

Dinuccio E., Biagini D., Rosato R., Balsari P., Lazzaron C. 2019. Organic matter and nitrogen balance in rabbit fattening and gaseous emissions during manure storage and simulated land application. Agric. Ecosyst. Environ., 269: 30-38. https://doi.org/10.1016/j.agee.2018.09.018

Estellés F., Calvet S., Blumetto O., Rodríguez-Latorre A.R., Torres A.G. 2009. Technical note: a flux chamber for measuring gas emissions from rabbits. World Rabbit Sci., 17: 169-179. https://doi.org/10.4995/wrs.2009.657

Estellés F., Rodríguez-Latorre A.R., Calvet S., Villagrá A., Torres A.G. 2010. Daily carbon dioxide emission and activity of rabbits during the fattening period. Biosyst. Eng., 106: 338-343. https://doi.org/10.1016/j.biosystemseng.2010.02.011

Estellés F., López M.C., Belenguer A.I.J., Calvet S. 2014. Evaluation of calcium superphosphate as an additive to reduce gas emissions from rabbit manure. World Rabbit Sci., 22: 279-286. https://doi.org/10.4995/wrs.2014.3223

Fetiveau M., Savietto D., Gidenne T., Pujol S., Aymard P., Fortun-Lamothe L. 2021. Effect of access to outdoor grazing and stocking density on space and pasture use, behaviour, reactivity, and growth traits of weaned rabbits. Animal, 15: 100334. https://doi.org/10.1016/j.animal.2021.100334

Fetiveau M., Savietto D., Bannelier C., Fillon V., Despeyroux M., Pujol S., Fortun-Lamothe L. 2023a. Effect of outdoor grazing area size and genotype on space and pasture use, behaviour, health, and growth traits of weaned rabbits. Animal - Open Space, 2: 100038. https://doi.org/10.1016/j.anopes.2023.100038

Fetiveau M., Savietto D., Janczak A.M., Bannelier C., Plagnet A.S., Tauveron M., Fortun-Lamothe L. 2023b. Time budget of two rabbit genotypes having access to different-sized pasture areas. Appl. Anim. Behav. Sci., 260: 105872. https://doi.org/10.1016/j.applanim.2023.105872

Fetiveau M., Savietto D., Janczak A. M., Fortun-Lamothe L., Fillon V. 2024. Thoughtful or distant farmer: Exploring the influence of human-animal relationships on rabbit stress, behaviour, and emotional responses in two distinct living environments. Animal Welfare, 33: e47. https://doi.org/10.1017/awf.2024.54

Fortun-Lamothe L., Combes S., Gidenne T. 2009. Contribution of intensive rabbit breeding to sustainable development. A semiquantitative analysis of the production in France. World Rabbit Sci., 17: 79-85. https://doi.org/10.4995/wrs.2009.661

Faye B., Waltner-Toews D., McDermott J. 1999. From ecopathology to agroecosystem health. Prev. Vet. Med., 39: 111-128. https://doi.org/10.1016/S0167-5877(98)00149-4

Franz R., Soliva C.R., Kreuzer M., Hummel J., Clauss M. 2011. Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: implications for the scaling of methane production with body mass in nonruminant mammalian herbivores. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 158: 177-181. https://doi.org/10.1016/j.cbpa.2010.10.019

Gálvez-Bravo L., Belliure J., Rebollo S. 2009. European rabbits as ecosystem engineers: warrens increase lizard density and diversity. Biodivers. Conserv., 18: 869-885. https://doi.org/10.1007/s10531-008-9438-9

Gálvez-Bravo L., López-Pintor A., Rebollo S., Gómez-Sal A. 2011. European rabbit (Oryctolagus cuniculus) engineering effects promote plant heterogeneity in Mediterranean dehesa pastures. J. Arid Environ., 75: 779-786. https://doi.org/10.1016/j.jaridenv.2011.03.015

Garrett R., Ryschawy J., Bell L., Cortner O., Ferreira J., Garik A.V., Gil J., Klerkx L., Moraine M., Peterson C., dos Reis J.C., Valentim J. 2020. Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecol. Soc., 25: 24. https://doi.org/10.5751/ES-11412-250124

Gerber P., Key N., Portet F., Steinfeld H. 2010. Policy options in addressing livestock’s contribution to climate change. Animal, 4: 393-406. https://doi.org/10.1017/S1751731110000133

Gidenne T., Garreau H., Drouilhet L., Aubert C., Maertens L. 2017. Improving feed efficiency in rabbit production, a review on nutritional, technico-economical, genetic and environmental aspects. Anim. Feed Sci. Technol., 225: 109-122. https://doi.org/10.1016/j.anifeedsci.2017.01.016

Gidenne T., Fortun-Lamothe L., Huang Y., Savietto D. 2024. Pastured rabbit systems and organic certification: European Union regulations and technical and economic performances in France. World Rabbit Sci., 32: 87-97. https://doi.org/10.4995/wrs.2024.20894

Goglio P., Knudsen M.T., Van Mierlo K., Röhrig N., Fossey M., Maresca A., Hashemi F., Waqas M.A., Yngvesson J., Nassy G., Broekema R., Moakes S., Pfeifer C., Borek R., Yanez-Ruiz D., Cascante M.Q., Syp A., Zylowsky T., Romero-Huelva M., Smith L.G. 2023. Defining common criteria for harmonizing life cycle assessments of livestock systems. Clean Prod Lett., 4: 100035. https://doi.org/10.1016/j.clpl.2023.100035

Golub A.A., Henderson B.B., Hertel T.W., Gerber P.J., Rose S.K., Sohngen B. 2013. Global climate policy impacts on livestock, land use, livelihoods, and food security. Proc. Natl. Acad. Sci., 110: 20894-20899. https://doi.org/10.1073/pnas.1108772109

Green R.E., Cornell S.J., Scharlemann J.P.W., Balmford A. 2005. Farming and the fate of wild nature. Science, 307: 550-555. https://doi.org/10.1126/science.1106049

Guené-Grand E., Davoust C., Launay C. 2021. A new alternative outdoor housing method (Wellap®) for fattening rabbits: first results. In: Proc. 12th World Rabbit Congress. Nantes, France, E-06.

Hidayat C., Widiawati Y., Tiesnamurti B., Pramono A., Krisnan R., Shiddieqy M.I. 2021. Comparison of methane production from cattle, buffalo, goat, rabbit, chicken, and duck manure. IOP Conf. Ser. Earth Environ. Sci., 648: 012112. https://doi.org/10.1088/1755-1315/648/1/012112

Hodge I. 1978a. On the local environmental impact of livestock production. J. Agric. Econ., 29: 279-290. https://doi.org/10.1111/j.1477-9552.1978.tb02425.x

Hodge I. 1978b. An application of discriminant analysis for the evaluation of the local environmental impact of livestock production. Agric. Environ., 4: 111-121. https://doi.org/10.1016/0304-1131(78)90015-2

Innes R. 2000. The economics of livestock waste and its regulation. Am. J. Agric. Econ., 82: 97-117. https://doi.org/10.1111/0002-9092.00009

Kaasschieter G.A., de Jong R., Schiere J.B., Zwart D. 1992. Towards a sustainable livestock production in developing countries and the importance of animal health strategy therein. Vet. Quarterly, 14: 66-75. https://doi.org/10.1080/01652176.1992.9694333

Kaliste E., Linnainmaa M., Meklin T., Nevalainen A. 2002. Airborne contaminants in conventional laboratory rabbit rooms. Lab. Anim., 36: 43-50. https://doi.org/10.1258/0023677021911759

Kremen C., Merenlender A.M. 2018. Landscapes that work for biodiversity and people. Science, 362: eaau6020. https://doi.org/10.1126/science.aau6020

Leroy F., Abraini F., Beal T., Dominguez-Salas P., Gregorini P., Manzano P., Rowntree J., van Vliet S. 2022. Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets – An argument against drastic limitation of livestock in the food system. Animal, 16: 100457. https://doi.org/10.1016/j.animal.2022.100457

Lund V., Anthony R., Röcklinsberg H. 2004. The ethical contract as a tool in organic animal husbandry. J. Agric. Environ. Ethics, 17: 23-49. https://doi.org/10.1023/B:JAGE.0000010843.60352.65

Lytle W., Meyer T.K., Tanikella N.G., Burnham L., Engel J., Schelly C., Pearce J.M. 2021. Conceptual design and rationale for a new agrivoltaics concept: pasture-raised rabbits and solar farming. J. Clean. Prod., 282: 124476. https://doi.org/10.1016/j.jclepro.2020.124476

Mekonnen M.M., Hoekstra A.Y. 2012. A global assessment of the water footprint of farm animal products. Ecosystems, 15: 401-415. https://doi.org/10.1007/s10021-011-9517-8

Méda B., Fortun-Lamothe L., Hassouna M. 2014. Prediction of nutrient flows with potential impacts on the environment in a rabbit farm: a modelling approach. Anim. Prod. Sci., 54: 2042-2051. https://doi.org/10.1071/AN14530

Monteny G.-J., Bannink A., Chadwick D. 2006. Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosyst. Environ., 112: 163-170. https://doi.org/10.1016/j.agee.2005.08.015

Pascaris A.S., Handler R., Schelly C., Pearce J.M. 2021. Life cycle assessment of pasture-based agrivoltaic systems: emissions and energy use of integrated rabbit production. Clean. Responsible Consum., 3: 100030. https://doi.org/10.1016/j.clrc.2021.100030

Pearse F. 2018. Sparing vs. Sharing: the great debate over how to protect nature. Available at https://e360.yale.edu/features/sparing-vs-sharing-the-great-debate-over-how-to-protectnature. Accessed June 2024.

Petersen S.O., Sommer S.G., Béline F., Burton C., Dach J., Dourmad J.Y., Leip A., Misselbrook T., Nicholson F., Poulsen H.D., Provolo G., Sørensen P., Vinnerås B., Weiske A., Bernal M.-P., Böhm R., Juhász C., Mihelic R. 2007. Recycling of livestock manure in a whole-farm perspective. Livest. Sci., 112: 180-191. https://doi.org/10.1016/j.livsci.2007.09.001

Petersen S.O., Blanchard M., Chadwick D., Del Prado A., Edouard N., Mosquera J., Sommer S.G. 2013. Manure management for greenhouse gas mitigation. Animal, 7: 266-282. https://doi.org/10.1017/S1751731113000736

Porcher J. 2011. Vivre avec les animaux, une utopie pour le XXIe siècle. La Découverte, Paris, France. https://doi.org/10.3917/dec.porch.2011.01

Pretty J., Bharucha Z.P. 2014. Sustainable intensification in agricultural systems. Ann. Bot., 114: 1571-1596. https://doi.org/10.1093/aob/mcu205

Ran Y., Lannerstad M., Herrero M., Van Middelaar C.E., De Boer I.J.M. 2016. Assessing water resource use in livestock production: a review of methods. Livest. Sci., 187: 68-79. https://doi.org/10.1016/j.livsci.2016.02.012

Reese J. 2018. The end of animal farming: how scientists, entrepreneurs, and activists are building an animal-free food system. Beacon Press, Boston U.S.A.

Savietto D., Fillon V., Temple-Boyer--Dury A., Derbez F., Aymard P., Pujol S., Rodriguez A., Borne S., Simon S., Grillot M., Lhoste E., Dufils A., Drusch S. 2023. Design of a functional organic agroforestry system associating rabbits and apple trees. Animal - Open Space, 2: 100051. https://doi.org/10.1016/j.anopes.2023.100051

Savietto D., Fillon V., Fetiveau M., Bannelier C., Despeyroux M., Guillermin A., Morel K., Rodriguez A., Borne S., Simon S., Grillot M., Derbez F., Drusch S. 2024. Identification of interspecific benefits (and some limits) in an agroforestry system combining rabbits and apple trees. Available at SSRN 4772533., https://doi.org/10.2139/ssrn.4772533

Schulze M., Sonntag W., von Meyer-Höfer M. 2023. Is less more? Investigating citizen and consumer preferences for the future direction of livestock farming policy. J. Clean. Prod., 390: 136136. https://doi.org/10.1016/j.jclepro.2023.136136

Steinfeld H., Gerber P., Wassenaar T., Castel V., Rosales M., Haan C. de, 2006. Livestock’s long shadow: environmental issues and options. F.A.O, Rome, Italy. https://www.fao.org/4/a0701e/a0701e00.htm

Stenholm C.W., Waggoner D.B. 1991. Developing future-minded strategies for sustainable poultry production. Poult. Sci., 70: 203-210. https://doi.org/10.3382/ps.0700203

Theau-Clément M., Guardia S., Davoust C., Galliot P., Souchet C., Bignon L., Fortun-Lamothe L. 2016. Performance and sustainability of two alternative rabbit breeding systems. World Rabbit Sci., 24: 253-265. https://doi.org/10.4995/wrs.2016.5154

Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418: 671-677. https://doi.org/10.1038/nature01014

Valdés-Correcher E., Sitters J., Wassen M., Brion N., Olde Venterink H. 2019. Herbivore dung quality affects plant community diversity. Sci. Rep., 9: 5675. https://doi.org/10.1038/s41598-019-42249-z

Verburg R., Stehfest E., Woltjer G., Eickhout B. 2009. The effect of agricultural trade liberalisation on land-use related greenhouse gas emissions. Glob. Environ. Change, 19: 434-446. https://doi.org/10.1016/j.gloenvcha.2009.06.004

Waltner-Toews D. 1996. Ecosystem health - a framework for implementing sustainability in agriculture. BioScience, 46: 686-689. https://doi.org/10.2307/1312898

Wang H., Liu J., Li J., Jia Z., Li C. 2022. Comparative life cycle assessment of rex rabbit breeding industry chains: benefits of a circular industry chain. Int. J. Life Cycle Assess., 27: 366-379. https://doi.org/10.1007/s11367-022-02036-x

Willett W., Rockström J., Loken B., Springmann M., Lang T., Vermeulen S., Garnett T., Tilman D., DeClerck F., Wood A., Jonell M., Clark M., Gordon L.J., Fanzo J., Hawkes C., Zurayk R., Rivera J.A., De Vries W., Majele Sibanda L., Afshin A., Chaudhary A., Herrero M., Agustina R., Branca F., Lartey A., Fan S., Crona B., Fox E., Bignet V., Troell M., Lindahl T., Singh S., Cornell S.E., Srinath Reddy K., Narain S., Nishtar S., Murray C.J.L. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393: 447-492. https://doi.org/10.1016/S0140-6736(18)31788-4

World Health Organization. 2017. One Health. Available at https://www.who.int/news-room/questions-andanswers/item/one-health. Accessed on July 2024.

Show more Show less