An LPS based method to stimulate the inflammatory response in growing rabbits
DOI:
https://doi.org/10.4995/wrs.2016.2141Keywords:
rabbit, immune response, LPS, inflammation, TNF-αAbstract
Reliable indicators are needed to study the relationship between the inflammatory response of the growing rabbit and breeding factors such as feeding practices. A lipopolysaccharide (LPS) stimulation of the inflammatory response is a valid model of bacterial infection in laboratory animals, but no data on the growing rabbit has yet been obtained. The aim of our study was to determine an adequate dose of LPS to inject in growing rabbits in order to elicit a measurable inflammatory response in terms of plasmatic TNF-α and rise in rectal temperature. Three trials were carried out in this study: 2 development trials, the first (n=18) testing 3 doses of LPS (2, 10, 50 μg/kg) on the plasmatic TNF-α concentration at 90 and 180 min post injection, and the second trial (n=36) testing 4 doses of LPS (50, 75, 100 and 150 μg/kg) on the TNF-α concentration 90 min post injection and the rectal temperature. The third trial was designed as an application of the method in a large number of animals (n=32) to study the effect of feed restriction and dietary increase in digestible fibre to starch ratio on the LPS inflammatory challenge response of growing rabbits. In development trials 1 and 2, animals had measurable TNF-α responses for doses higher than 10 μg/kg at 90 min post injection, with an increase in the number of responsive animals along with the dose. High variability was observed in TNF-α concentrations in responsive animals (coefficient of variation from 44 to 94%). Animals demonstrated an increase in rectal temperature for all doses injected in the range of 50-150 μg/kg from 90 min post injection with a peak at 180 min (ΔTr =1.9±0.7°C). Our observations led us to choose a dose of 100 μg/kg of LPS for our following studies, as the responses in terms of temperature and TNF-α were the most satisfactory. The application of our LPS injection protocol to our nutritional study enabled us to validate our protocol (ΔTr =1.1±0.7°C at 180 min and 15/32 TNF-α responsive animals) even though we were not able to demonstrate any effect of the feeding level or diet on the inflammatory response to an LPS injection.
Downloads
References
Brito B.E., Romano E.L., Grunfeld C. 1995. Increased lipopolysaccharide-induced tumour necrosis factor levels and death in hypercholesterolaemic rabbits. Clin. Exp. Immunol., 101: 357-361. doi:10.1111/j.1365-2249.1995.tb08364.x
De Blas C., Mateos G.G. 2010. Feed formulation. In: De Blas C. and Wiseman J. (ed). Nutrition of the Rabbit. CABI, Wallingford, UK, 222-232. doi:10.1079/9781845936693.0222
Dinges M.M., Schlievert P.M. 2001. Role of T cells and gamma interferon during induction of hypersensitivity to lipopolysaccharide by toxic shock syndrome toxin 1 in mice. Infect. Immun., 69: 1256-1264. doi:10.1128/IAI.69.3.1256-1264.2001
Ferrian S., Blas E., Larsen T., Sánchez J.P., Friggens N.C., Corpa J.M., Baselga M., Pascual J.J. 2013. Comparison of immune response to lipopolysaccharide of rabbit does selected for litter size at weaning or founded for reproductive longevity. Res. Vet. Sci., 94: 518-525. doi:10.1016/j.rvsc.2013.01.008
Feuerstein G., Hallenbeck J.M., Vanatta B., Rabinovici R., Perera P.Y., Vogel S.N. 1990. Effect of gram-negative endotoxin on levels of serum corticosterone, TNF-alpha, circulating blood cells, and the survival of rats. Circ. Shock, 30: 265-278.
Gidenne T., Combes S., Fortun-Lamothe L. 2012. Feed intake limitation strategies for the growing rabbit: effect on feeding behaviour, welfare, performance, digestive physiology and health: a review. Animal, 6: 1407-1419. doi:10.1017/S1751731112000389
Granger J., Osuchowski M., Remick D. 2006. Differential inflammatory response to LPS and sepsis. Shock, 25: 97-98. doi:10.1097/00024382-200606001-00294
Huang W.T., Niu K.C., Chang C.K., Lin M.T., Chang C.P. 2008. Curcumin inhibits the increase of glutamate, hydroxyl radicals and PGE2 in the hypothalamus and reduces fever during LPSinduced systemic inflammation in rabbits. Eur. J. Pharmacol., 593: 105-111. doi:10.1016/j.ejphar.2008.07.017
Kluger M.J., Rudolph K., Soszynski D., Conn C.A., Leon L.R., Kozak W., Wallen E.S., Moseley P.L. 1997. Effect of heat stress on LPS-induced fever and tumor necrosis factor. Am. J. Physiol-Reg. I., 273: R858-R863.
Kuo S.M. 2013. The Interplay Between Fiber and the Intestinal Microbiome in the Inflammatory Response. Adv. Nutr., 4: 16- 28. doi:10.3945/an.112.003046
Long N.C., Kunkel S.L., Vander A.J., Kluger M.J. 1990. Antiserum against tumor necrosis factor enhances lipopolysaccharide fever in rats. Am. J. Physiol., 258: R332-R337.
Mabika M., Laburn H. 1999. The role of tumour necrosis factoralpha (TNF-α) in fever and the acute phase reaction in rabbits. Pflug. Arch. Eur. J. Phy., 438: 218-223. doi:10.1007/s004240050901
MacDonald L., Radler M., Paolini A.G., Kent S. 2011a. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an antiinflammatory bias. Am. J. Physiol-Reg. I., 301: 172-184. doi:10.1152/ajpregu.00057.2011
MacDonald L., Begg D., Weisinger R.S., Kent S. 2012. Calorie restricted rats do not increase metabolic rate post-LPS, but do seek out warmer ambient temperatures to behaviourally induce a fever. Physiol. Behav., 107: 762-772. doi:10.1016/j.physbeh.2012.06.009
Maertens L., Perez J.M., Villamide M., Cervera C., Gidenne T., Xiccato G. 2002. Nutritive value of raw materials for rabbits: EGRAN tables 2002. World Rabbit Sci., 10: 157-166. doi:10.4995/wrs.2002.488
Marlier D., Dewree R., Delleur V., Licois D., Lassence C., Poulipoulis A., Vindevogel H. 2003. A review of the major causes of digestive disorders in the European rabbit. Ann. Med. Vet., 147: 385-392.
Matsuzaki J., Kuwamura M., Yamaji R., Inui H., Nakano Y. 2001. Inflammatory responses to lipopolysaccharide are suppressed in 40% energy-restricted mice. J. Nutr., 131: 2139-2144.
Meissonnier G.M., Laffitte J., Raymond I., Benoit E., Cossalter A.M., Pinton P., Bertin G., Oswald I.P., Galtier P. 2008. Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs. Toxicology, 247: 46-54. doi:10.1016/j.tox.2008.02.003
Perez J.M., Gidenne T., Bouvarel I., Arveux P., Bourdillon A., Briens C., Le Naour J., Messager B., Mirabito L. 2000. Replacement of digestible fibre by starch in the diet of the growing rabbit. II. Effects on performances and mortality by diarrhoea. Ann. Zootech., 49: 369-377. doi:10.1051/animres:2000128
Pie S., Awati A., Vida S., Falluel I., Williams B.A., Oswald I.P. 2007. Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets. J. Animal Sci., 85: 673-683. doi:10.2527/jas.2006-535
Qiu Y.S., Zhang J.W., Liu Y., Ma H.W., Cao F.Y., Xu J., Hou Y.Q. and Xu L.Y. 2013. The combination effects of acetaminophen and N-acetylcysteine on cytokines production and NFkappa B activation of lipopolysaccharide-challenged piglet mononuclear phagocytes in vitro and in vivo. Veterinary Immunology and Immunopathology, 152: 381-388. doi:10.1016/j.vetimm.2013.01.013
Redl H., Bahrami S., Schlag G., Traber D.L. 1993. Clinical detection of LPS and LPS and animal models of endotoxemia. Immunobiology, 187: 330-345. doi:10.1016/S0171-2985(11)80348-7
Remick D. 2004. The inflammatory response to intraperitoneal (IP) versus intravenous (IV) lipopolysaccharide (LPS). Shock, 21: 36-37. doi:10.1097/00024382-200406002-00107
Shibata M., Uno T., Riedel W., Nishimaki M., Watanabe K. 2005. Transiently enhanced LPS-induced fever following hyperthermic stress in rabbits. Int. J. Biometeorol., 50: 67- 74. doi:10.1007/s00484-005-0272-4
Downloads
Published
Issue
Section
License
This journal is licensed under a "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)".