Histological and histochemical evaluation of the small intestine and caecal appendix of rabbits fed triticale-based diets with added xylanase
Submitted: 2023-12-26
|Accepted: 2024-11-06
|Published: 2024-12-30
Copyright (c) 2024 Johana Paola Galeano Diaz, Juan Edrei Sanchez Torres, German Isauro Garrido Fariña, Ignacio Arturo Dominguez Vara, Ernesto Morales Almaraz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
rabbit, diet, triticale, xylanase, histology, intestinal villi, caecal appendix
Supporting agencies:
Abstract:
The inclusion of triticale in rabbit diets can negatively affect production parameters due to the presence of arabinoxylans that increase the viscosity of intestinal contents, making digestion and absorption of nutrients difficult. Therefore, the addition of the enzyme xylanase can improve intestinal morphology and the digestive process. This study aimed to conduct histological and histochemical evaluations of the small intestine and caecal appendix in growing-finishing rabbits fed diets containing 14% triticale supplemented with varying levels of xylanase. The rabbits had an initial average live weight of 822 g and reached a final weight of 2097 g. For this purpose, forty 35-d-old male rabbits crossbred New Zealand × California were used. Rabbits were housed in individual cages and randomly divided into four experimental treatments (xylanase at doses of 0, 4000, 8000 and 12 000 xylanase units (XU)/kg of dry matter). At the end of the experimental period, rabbits were slaughtered at seventy days of age and samples were taken from the duodenum, jejunum, ileum and caecal appendix. Samples were stained using the standard Haematoxylin-Eosin (HE) technique for the histological evaluation and Alcian Blue (PAS) for the histochemical evaluation. The addition of xylanase linearly increased the height of villi in the duodenum, jejunum and ileum, while villi width was linearly reduced in jejunum and increased in ileum. Crypt depth was linearly reduced by xylanase dose in duodenum, while the response was linear and quadratic in jejunum and ileum. The villi height to crypt depth ratio was linearly increased by the xylanase dose in the duodenum and jejunum, although the effect was quadratic in the ileum. The dome height of the caecal appendix increased linearly with the addition of xylanase. Epithelial mucus count was linearly reduced by xylanase dose in the base of the duodenum, jejunum and caecal appendix, although this linear reduction was only observed in the villi of the jejunum and in the caecal appendix. In conclusion, the addition of xylanase positively affected the histological and histochemical characteristics of the small intestine and caecal appendix, so its use could improve digestive and productive performance in rabbits.
References:
Aguilar M.M. 2008. Técnicas histológicas. In: González M.M. (ed.), Técnicas de laboratorio en biología celular y molecular (pp. 183-204). Distrito Federal, México. AGT Editor.
Biddle A., Stewart L., Blanchard J., Leschine S. 2013. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, 627-640. https://doi.org10.3390/d5030627
Boontiam W., Phaenghairee P., Van Hoeck V., Vasanthakumari B.L., Somers I., Wealleans A. 2022. Xylanase impact beyond performance: Effects on gut structure, faecal volatile fatty acid content and ammonia emissions in weaned piglets fed diets containing fibrous ingredients. Animals, 12: 3043. https://doi.org/10.3390/ani12213043.
Castellini C., Cardinali R., Rebollar P.G., Dal Bosco A., Jimeno V., Cossu M.E. 2007. Feeding fresh chicory (Chicoria intybus) to young rabbits: Performance, development of gastrointestinal tract and immune functions of appendix and Peyer’s patch. Animal Feed Sci. Technol., 134: 56-65. https://doi.org/10.1016/j.anifeedsci.2006.05.007
Cotozzolo E., Cremonesi P., Curone G., Menchetti L., Riva F., Biscarini F., Marongiu M.L., Castrica M., Castiglioni B., Miraglia D., Luridiana S., Brecchia, G. 2020. Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals, 11: 31. https://doi.org/10.3390/ani11010031
De Blas C., Mateos G.G. 2020. Feed formulation. In: Nutrition of the Rabbit. Ed: De Blas C., Wiseman J. CAB International, 243-253. https://doi.org/10.1079/9781789241273.0243
Donaldson J., Świątkiewicz S., Arczewka-Włosek A., Muszyński S., Szymańczyk S., Arciszewski M.B., Zacharko A.S., Kras, K., Valderde P.J.L., Schwars T., Tomaszewska E., Dobrowolski P. 2021. Modern hybrid rye, as an alternative energy source for broiler chickens, improves the absorption surface of the small intestine depending on the intestinal part and xylanase supplementation. Animals, 11: 1349. https://doi.org/10.3390/ani11051349
Elnasharty M.A., Abou-Ghanema I.I., Sayed-Ahmed A., Elnour AA. 2013. Mucosal-submucosal changes in rabbit duodenum during development. Int. J. Anim. Vet. Sci., 7: 252-260. https://doi.org/10.5281/zenodo.1083151
Fang S., Chen X., Ye X., Zhou L., Xue S., Gan Q. 2020. Effects of gut microbiome and short-chain fatty acids (SCFAs) on finishing weight of meat rabbits. Front. Microbiol., 11: 1835. https://doi.org/10.3389/fmicb.2020.01835
Frese S.A., Parker K., Calvert C.C., Mills D.A. 2015. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome, 3: 1-10. https://doi.org/10.1186/s40168-015-0091-8
Galeano D.J.P., Sánchez T.J.E., Domínguez V.I.A., Morales A.E., Ramírez B.J. E., Cruz M.R.G., Cervantes R.M., Valladarez C.B. 2024. Productive performance, digestibility, carcass traits and meat quality in rabbits fed triticale-based diets supplemented with xylanase. Tropic. Anim. Health Prod., 56: 117. https://doi.org/10.1007/s11250-024-03958-4
Gidenne T., Garcia J. 2006. Nutritional strategies improving the digestive health of the weaned rabbit. Recent Adv. Rabbit Sci., COST (ESF) & ILVO (Melle). Madrid, Spain. 229-238.
Kim J.J., Khan W.I. 2013. Goblet cells and mucins: Role in innate defense in enteric infections. Pathogens, 2: 55-70. https://doi.org/10.3390/pathogens2010055
Laudadio V., Passantino L., Perillo A., Lopresti G., Passantino A., Khan R.U., Tufarelli V. 2012. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 91: 265-270. DOI: https://doi.org/10.3382/ps.2011-01675
Lozano del Rio A.J., Hernández S.A., González I.R, Béjar H.M. (Eds.) 2004. Triticale improvemente and production. Triticale in Mexico. (Vol. 179). Food and Agriculture. 123-128.
Luo D., Yang F., Yang X., Yao J., Shi B., Zhou Z. 2009. Effects of xylanase on performance, blood parameters, intestinal morphology, microflora and digestive enzyme activities of broilers fed wheat-based diets. Asian-Australas. J. Anim. Sci., 22: 1288-1295. https://doi.org/10.5713/ajas.2009.90052
Makovicky P., Tumova E., Volek Z., Makovicky P., Vodicka P. 2014. Histological aspects of the small intestine under variable feed restriction: The effects of short and intense restriction on a growing rabbit model. Exp. Ther. Med., 8: 1623-1627. https://doi.org/10.3892/etm.2014.1924
McGoverin C.M., Snyders F., Muller N., Botes W., Fox G., Manley, M. 2011. A review of triticale uses and the effect of growth environment on grain quality. J. Sci. Food Agric., 91: 1155-1165. https://doi.org/10.1002/jsfa.4338
Mendes A.R., Ribeiro T., Correia B.A., Bule P., Macas, B., Falcao, L., Lordelo, M.M. 2013. Low doses of exogenous xylanase improve the nutritive value of triticale-based diets for broilers. J. Appli. Poult. Res., 22: 92-99. https://doi.org/10.3382/japr.2012-00610
Nain S., Renema R.A., Zuidhof M.J., Korver D.R. 2012. Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poult. Sci., 91: 888-898.https://doi.org/10.3382/ps.2011-01661
NOM-033-SAG/ZOO-2014. Métodos para dar muerte a los animales domésticos y silvestres. Available at https://www.dof.gob.mx/nota_detalle.php?codigo=5405210&fecha=26/08/2015/. Accessed July 2021.
Patience J.F., Li Q., Petry A.L. 2022. Xylanases and cellulases: relevance in monogastric nutrition–pigs. In: Enzymes in Farm Animal Nutrition, 33-51. GB: CABI. https://doi.org/10.1079/9781789241563.000
Pelaseyed T., Bergström J.H., Gustafsson J.K., Ermund A., Birchenough G. M., Schütte A., Van der Posts S., Svensson F., Rodríguez P.A.M., Nyström E.E., Wising C., Johansson M.E., Hansson G.C. 2014. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev., 260: 8-20. https://doi.org/10.1111/imr.12182
Peng L., Li Z.R., Green R.S., Holzman I.R., Lin J. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr., 139: 1619-1625. https://doi.org/10.3945/jn.109.104638
Rakha A., Åman P., Andersson R. 2011. Dietary fiber in triticale grain: Variation in content, composition, and molecular weight distribution of extractable components. J. Cereal Sci., 54: 324-331. https://doi.org/10.1016/j.jcs.2011.06.010
Romero C., Cuesta S., Astillero J.R., Nicodemus N., De Blas C. 2010. Effect of early feed restriction on performance and health status in growing rabbits slaughtered at 2 kg live-weight. World Rabbit Sci., 18: 211-218. https://doi.org/10.4995/wrs.2010.778
SAS. 2002. SAS User's Guide: Statistics. Ver 9.0. IN Institute, S. (Ed.). Cary, NC, USA.
Seyyedin S., Nazem M.N. 2017. Histomorphometric study of the effect of methionine on small intestine parameters in rat: an applied histologic study. Folia Morph., 76: 620-629. https://doi.org/10.5603/FM.a2017.0044
Šimić A., González-Ortiz G., Mansbridge S.C., Rose S.P., Bedford M.R., Yovchev D., Pirgozliev V.R. 2023. Broiler chicken response to xylanase and fermentable xylooligosaccharide supplementation. Poult. Sci., 102: 103000. https://doi.org/10.1016/j.psj.2023.103000
Smith H.F., Fisher R.E., Everett M.L., Thomas A.D., Randal Bollinger R., Parker W. 2009. Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J. Evol. Biol., 22: 1984-1999. https://doi.org/10.1111/j.1420-9101.2009.01809.x
Steel R., Torrie J., Dickey D. 1997. Bioestadistica: Principios yprocedimientos. 2ª ed., McGraw-Hill, New York, NY, USA.
Valdivia A.G., Fernandez de Arcipreste N.C., Hurtado F.A., Martinez R.H.A., Tórtora P.J.L., Montaraz C.J.A. 2007. Morphological and immunologic aspects of the cecal appendix of the rabbit. Veterinaria México OA, 38(003). Available at https://veterinariamexico.fmvz.unam.mx/index.php/vet/article/view/186.
Villamide M., Maertens L., de Blas C. 2020. Feed evaluation. In Nutrition of the Rabbit, 3rd ed.; Blas, C.D., Wiseman, J., Eds.; CAB International: Wallingford/Oxfordshire, UK, p. 159.
Wang J., Liu S., Ma J., Piao X. 2021. Changes in growth performance and ileal microbiota composition by xylanase supplementation in broilers fed wheat-based diets. Front. Microbiol., 12: 706396. https://doi10.3389/fmicb.2021.706396



