A method to estimate endogenous losses of nitrogen and amino acids at the ileal level in growing rabbits

Authors

DOI:

https://doi.org/10.4995/wrs.2024.19654

Keywords:

Ileal, nitrogen, amino acids, endogenous losses, growing rabbit

Abstract

Apparent ileal digestibility can be corrected to give the true ileal digestibility of the nitrogen and amino acids provided by the diet, by determining the flow of endogenous nitrogen and amino acids (from desquamated epithelial cells of gastrointestinal mucosa, mucins and digestive enzymes). This flow of nitrogen and amino acids has been studied in adult rabbits fitted with a T-cannula, but remains unknown for growing rabbits. The aim of this work was to propose a method to estimate endogenous nitrogen and amino acid losses in the ileum of growing rabbits slaughtered at 64 d of age from 20:00 h. For this purpose, two experiments were carried out. The first was performed with 10 weaned rabbits fed with a diet with casein as the only source of protein (whose ileal digestibility is 100%) and labelled with ytterbium. This experiment allowed us to identify the relationship between the ileal flow of endogenous nitrogen (IFEN) and the dry matter intake in the last 24 h before slaughter (DMI), which fits the equation: IFEN (mg/d)=5.99 DMI (g/d) +133; (R2=0.778, residual standard deviation=138, P<0.001, n=10). The second experiment was carried out with 36 rabbits fed the same diet but without ytterbium, with whose ileal content 9 pools were constituted to determine the amino acid profile of endogenous nitrogen, which was found to be rich in glutamic acid, serine, aspartic acid, glycine, valine and threonine (15.97±1.33; 8.00±0.80; 7.06±0.72; 6.24±0.77; 5.48±0.51 and 4.97±0.47 g/16 g of N, respectively) and poor in methionine and histidine (1.05±0.06 and 1.34±0.16 g/16 g of N, respectively). Knowing the DMI of a certain growing rabbit in the 24 h prior to slaughter, the combined use of the equation and the amino acid profile obtained makes it possible to estimate the ileal endogenous losses of each amino acid.

Downloads

Download data is not yet available.

Author Biographies

Pablo Jesús Marín-García, Universidad Cardenal Herrera CEU

Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria

Mireia Rodríguez, Universitat Politècnica de València

Instituto de Ciencia y Tecnología Animal

Luís Ródenas, Universitat Politècnica de València

Instituto de Ciencia y Tecnología Animal

Vicente Javier Moya, Universitat Politècnica de València

Instituto de Ciencia y Tecnología

Eugenio Martínez-Paredes, Universitat Politècnica de València

Instituto de Ciencia y Tecnología Animal

María del Carmen López-Luján, Universitat Politècnica de València

Instituto de Ciencia y Tecnología Animal

María Cambra-López, Universitat Politècnica de València

Instituto de Ciencia y Tecnología Animal

Juan José Pascual, Universitat Politècnica de València

Instituto de Ciencia y Tecnología Animal

Enrique Blas, Universitat Politècnica de València

Instituto de Ciencia y Tecnología Animal

References

Adeola O., Xue P.C., Cowieson A.J., Ajuwon K.M. 2016. Basal endogenous losses of amino acids in protein nutrition research for swine and poultry. Anim. Feed Sci.Technol., 221, 274-283. https://doi.org/10.1016/j.anifeedsci.2016.06.004

AOAC. 2002. Official Methods of Analysis, 17th ed. Association of Official Analytical Chemist, Gaithersburg, MD, USA.

Blok M.C., Jansman A.J.M., Makkink C.A. 2017. Amount and amino acid composition of basal endogenous protein losses at the terminal ileum of broilers. CVB documentation report nr. 60. Wageningen Livestock Research. https://doi.org/10.18174/426332

Boletín Oficial del Estado. 2013. Real Decreto 53/2013, por el que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia. BOE, 34: 11370-11421.

Bosch L., Alegría A., Farré R. 2006. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J. Chromatogr B, 831: 176-183. https://doi.org/10.1016/j.jchromb.2005.12.002

De Blas C., Mateos G.G. 2020. Feed formulation. In: De Blas C. and Wiseman J. (ed). Nutrition of the rabbit, 3rd ed. CABI Publishing, Wallingford, UK, 243-253. https://doi.org/10.1079/9781789241273.0243

Estany J., Camacho J., Baselga M., Blasco A. 1992. Selection response of growth rate in rabbits for meat production. Genet. Sel. Evol., 24: 527–537. https://doi.org/10.1186/1297-9686-24-6-527

García J., Carabaño R., de Blas C. 1999. Effect of fiber source on cell wall digestibility and rate of passage in rabbits. J. Anim. Sci., 77: 898-905. https://doi.org/10.2527/1999.774898x

García A.I., de Blas C., Carabaño R. 2004. Effect of type of diet (casein-based or protein-free) and caecotrophy on ileal endogenous nitrogen and amino acid flow in rabbits. Anim. Sci., 79: 231-240. https://doi.org/10.1017/S1357729800090093

García A.I., de Blas C., Carabaño R. 2005. Comparison of different methods for nitrogen and amino acid evaluation in rabbit diets. Anim. Sci., 80: 169-178.

Koneswaran G., Nierenberg, D. 2008. Global farm animal production and global warming: Impacting and mitigating climate change. Environ. Health Perspect.,116: 578-582. https://doi.org/10.1289/ehp.11034

Merino J.M., Carabaño R. 2003. Efecto de la cecotrofia sobre la composición química de la digesta y sobre la digestibilidad ileal. ITEA, 24: 657-659.

Mertens D.R., Allen M., Carmany J., Clegg J., Davidowicz A., Drouches M., Frank K., Gambin D., Garkie M., Gildemeister B., Jeffress D., Jeon C.S., Jones D., Kaplan D., Kim G.N., Kobata S., Main D., Moua X., Paul B., Robertson J., Taysom D., Thiex N., Williams J., Wolf M. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int., 85: 1217-1240. https://doi.org/10.1093/jaoac/85.6.1217

Misiukiewicz A., Gao M., Filipiak W., Cieslak A., Patra A.K., Szumacher-Strabel M. 2021. Review: Methanogens and methane production in the digestive systems of nonruminant farm animals. Animal, 15: 100060. https://doi.org/10.1016/j.animal.2020.100060

Peyraud, J., MacLeod, M. 2020. Future of EU livestock: How to contribute to a sustainable agricultural sector. European Commission, Directorate-General for Agriculture and Rural Development. https://data.europa.eu/doi/10.2762/3440

Stein H.H., Trottier N.L., Bellaver C., Easter R.A. 1999. The effect of feeding level and physiological status on total flow and amino acid composition of endogenous protein at the distal ileum in swine. J. Anim. Sci., 77: 1180-1187. https://doi.org/10.2527/1999.7751180x

Villamide M.J., García A.I., Llorente A., Carabaño R. 2013. Ileal vs. faecal amino acid digestibility in concentrates and fibrous sources for rabbit feed formulation. Anim. Feed Sci. Technol., 182: 100-110. https://doi.org/10.1016/j.anifeedsci.2013.04.005

Xiccato G., Trocino A. 2020. Energy and protein metabolism and requirements. In: De Blas C. and Wiseman J. (ed). Nutrition of the rabbit, 3rd ed. CABI Publishing, Wallingford, UK, 89-125. https://doi.org/10.1079/9781789241273.0089

Downloads

Published

2024-03-28

Issue

Section

Papers