Preslaughter feed withdrawal time and its effect on rabbit blood measures, gastrointestinal tract parameters and Longissimus lumborum glycolytic potential

Authors

DOI:

https://doi.org/10.4995/wrs.2023.19177

Keywords:

fasting, glycolytic potential, muscle, preslaughter management, rabbit, stress

Abstract

This study aimed to characterise the physiological response of rabbits to feed withdrawal without stress caused by crating and transport to the slaughterhouse. A total of 72 recently weaned Grimaud rabbits were allocated into 12 cages, each with 6 rabbits (3 females and 3 males, to reflect commercial practices). A preslaughter feed withdrawal time (FWT) was randomly assigned to each of the 12 cages (t=0, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22 or 24 h). Blood lactate and cortisol concentrations were measured at exsanguination. These observations did not indicate an elevated level of stress in the rabbits (P>0.05). The maximum Longissimus lumborum glycolytic potential was observed for rabbits that fasted for 3 and 6 h and was relatively stable from 127.78 to 139.04 μmol/g for rabbits with FWT longer than 12 h. As expected, gastrointestinal tract and stomach content weights were lower for rabbits with longer FWT (P<0.0001), while caecum weights did not (P=0.051). Rabbits with longer FWT had lower stomach pH and higher caecum pH (both P<0.0001). Metataxonomic 16S analysis revealed that FWT had a significant effect (all P<0.01) on microbiome beta diversity in faeces and caecum. The polymerase chain reaction analysis using specific primers revealed Enterobacteriaceae presence in the faeces of male rabbits only at 18 and 22 h. Our results suggest that the caecotrophic behaviour of rabbits allows them to be particularly resistant to hunger despite their small size. However, to limit Enterobacteriaceae shedding, the FWT should not exceed 18 h.

Downloads

Download data is not yet available.

Author Biographies

Anne-Sophie Larivière-Lajoie, Université Laval

Department of Animal Science, Faculty of Agriculture and Food Science.

PhD graduate student involved in meat quality.

Pascal Laforge, Université Laval

Department of Animal Science, Faculty of Agriculture and Food Science

Institute of Nutrition and Functional Foods (INAF)

Antony T. Vincent, Université Laval

Department of Animal Science, Faculty of Agriculture and Food Science.

Institute of Nutrition and Functional Foods (INAF).

Institut de Biologie Intégrative et des Systèmes (IBIS).

Simon Binggeli, Université Laval

Department of Animal Science, Faculty of Agriculture and Food Science

Dany Cinq-Mars, Université Laval

Department of Animal Science, Faculty of Agriculture and Food Science

Frédéric Guay, Université Laval

Department of Animal Science, Faculty of Agriculture and Food Science

Frédéric Raymond, Université Laval

Institute of Nutrition and Functional Foods (INAF)

Antoni Dalmau, Institute of Agrifood Research and Technology

IRTA Tecnología de los Alimentos

Linda Saucier, Université Laval

Department of Animal Science, Faculty of Agriculture and Food Science.

Institute of Nutrition and Functional Foods (INAF)

 

References

Acevedo-Giraldo J.D., Sánchez J.A., Romero M.H. 2020. Effects of feed withdrawal times prior to slaughter on some animal welfare indicators and meat quality traits in commercial pigs. Meat Sci., 167: 1-10. https://doi.org/10.1016/j.meatsci.2019.107993

Adeolu M., Alnajar S., Naushad S., Gupta R.S. 2016. Genomebased phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol., 66: 5575-5599. https://doi.org/10.1099/ijsem.0.001485

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol., 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2

Andrew S. 2010. A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed January 2022.

Bate-Smith E.C., Bendall J.R. 1949. Factors determining the time course of rigor mortis. J. Physiol., 110: 47-65. https://doi.org/10.1113/jphysiol.1949.sp004420

Bertol T.M., Ellis M., Ritter M.J., McKeith F.K. 2005. Effect of feed withdrawal and handling intensity on longissimus muscle glycolytic potential and blood measurements in slaughter weight pigs. J. Anim. Sci., 83: 1536-1542. https://doi.org/10.2527/2005.8371536x

Bianchi M., Petracci M., Venturi L., Cremonini M.A., Cavani C. 2008. Influence of pre-slaughter fasting on live weight loss, carcass yield and meat quality in rabbits. In Proc.: 9th World Rabbit Congress, 10-13 June 2008, Verona, Italy, 1313-1318.

Bidner B.S., Ellis M., Witte D.P., Carr S.N., McKeith F.K. 2004. Influence of dietary lysine level, pre-slaughter fasting, and rendement napole genotype on fresh pork quality. Meat Sci., 68: 53-60. https://doi.org/10.1016/j.meatsci.2003.10.018

Bray J.R., Curtis J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27: 326-349. https://doi.org/10.2307/1942268

Brecchia G., Bonanno A., Galeati G., Federici C., Maranesi M., Gobbetti A., Zerani M., Boiti C. 2006. Hormonal and metabolic adaptation to fasting: Effects on the hypothalamicpituitary-ovarian axis and reproductive performance of rabbit does. Domest. Anim. Endocrinol., 31: 105-122. https://doi.org/10.1016/j.domaniend.2005.09.006

Buil T., María G.A., Villarroel M., Liste G., López G. 2010. Critical points in the transport of commercial rabbits to slaughter in Spain that could compromise animals’ welfare. World Rabbit Sci., 12: 269-279. https://doi.org/10.4995/wrs.2004.566

Callahan B.J., McMurdie P.J., Holmes S.P. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J., 11: 2639-2643. https://doi.org/10.1038/ismej.2017.119

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods., 13: 581-583. https://doi.org/10.1038/nmeth.3869

Cao Y., Dong Q., Wang D., Zhang P., Liu Y., Niu C. 2022. microbiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics, 38: 4027-4029. https://doi.org/10.1093/bioinformatics/btac438

Carabaño R., Piquer J., Menoyo D., Badiola I. 2010. The digestive system of the rabbit. In: De Blas J.C. and Wiseman J. (ed.). Nutrition of the rabbit (2nd ed.). CABI Publishing, Wallingford, UK, 1-18. https://doi.org/10.1079/9781845936693.0001

Carmichael E.B., Strickland J.T., Driver R.L. 1945. The contents of the stomach, small intestine, cecum and colon of normal and fasting rabbits. Am. J. Physiol., 143: 562-566. https://doi.org/10.1152/ajplegacy.1945.143.4.562

Cavani C., Petracci M., Trocino A., Xiccato G. 2009. Advances in research on poultry and rabbit meat quality. Ital. J. Anim. Sci., 8: 741-750. https://doi.org/10.4081/ijas.2009.s2.741

CCAC. 2009. The care and use of farm animals in research, teaching and testing. Canadian Council on Animal Care. http://www.ccac.ca/Documents/ Standards/Guidelines/Farm_Animals.pdf. Accessed October 2021.

Cheeke P.R. 1987. Digestive physiology. In: Cheeke P.R. (ed), Rabbit Feeding and Nutrition. Academic Press, Inc., Orlando, FL, 15-33. https://doi.org/10.1016/B978-0-08-057078-5.50008-X

Choe J. 2018. Pre-slaughter stress, animal welfare, and its implication on meat quality. Korean J. Agric. Sci., 45: 58-65. https://doi.org/10.7744/KJOAS.20180013

Chu L.-R., Garner J.P., Mench J.A. 2004. A behavioral comparison of New Zealand White rabbits (Oryctolagus cuniculus) housed individually or in pairs in conventional laboratory cages. Appl. Anim. Behav. Sci., 85: 121-139. https://doi.org/10.1016/j.applanim.2003.09.011

Combes S., Gidenne T., Cauquil L., Bouchez O., Fortun-Lamothe L. 2014. Coprophagous behaviour of rabbit pups affects implantation of cecal microbiota and health status. J. Anim. Sci., 92: 652-665. https://doi.org/10.2527/jas.2013-6394

Combes S., Massip K., Martin O., Furbeyre H., Cauquil L., Pascal G., Bouchez O., Le Floc’h N., Zemb O., Oswald I.P., Gidenne T. 2017. Impact of feed restriction and housing hygiene conditions on specific and inflammatory immune response, the cecal bacterial community and the survival of young rabbits. Animal., 11: 854-863. https://doi.org/10.1017/S1751731116002007

Coppings R.J., Ekhator N., Ghodrati A. 1989. Effects of antemortem treatment and transport on slaughter characteristics of fryer rabbits. J. Anim. Sci., 67: 872-880. https://doi.org/10.2527/jas1989.674849x

Cornejo-Espinoza J.G., Rodríguez-Ortega L.T., Pro-Martínez A., González-Cerón F., Conde-Martínez V.F., Ramírez-Guzmán M.E., López-Pérez E., Hernández-Cázares A.S. 2016. Efecto del ayuno ante mortem en el rendimiento de la canal y calidad de la carne de conejo. Arch. Zootec., 65: 171-175. https://doi.org/10.21071/az.v65i250.484

Dalla Costa F.A., Devillers N., Paranhos da Costa M.J.R., Faucitano L. 2016. Effects of applying preslaughter feed withdrawal at the abattoir on behaviour, blood parameters and meat quality in pigs. Meat Sci., 119: 89-94. https://doi.org/10.1016/j.meatsci.2016.03.033

Dalin A.-M., Magnusson U., Häggendal J., Nyberg L. 1993. The effect of transport stress on plasma levels of catecholamines, cortisol, corticosteroid-binding globulin, blood cell count, and lymphocyte proliferation in pigs. Acta vet. Scand., 34: 59-68. https://doi.org/10.1186/BF03548224

Dalle Zotte A. 2002. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci., 75: 11-32. https://doi.org/10.1016/S0301-6226(01)00308-6

de Vries A., Ripley B.D. 2022. ggdendro: Create Dendrograms and Tree Diagrams Using ‘ggplot2’. R package version 0.1.23, https://github.com/andrie/ggdendro

Edwards L.N., Grandin T., Engle T.E., Porter S.P., Ritter M.J., Sosnicki A.A., Anderson D.B. 2010. Use of exsanguination blood lactate to assess the quality of pre-slaughter pig handling. Meat Sci., 86: 384-390. https://doi.org/10.1016/j.meatsci.2010.05.022

EFSA. 2022. Welfare of domestic birds and rabbits transported in containers. European Food Safety Authority. EFSA Journal, 20: 1-188. https://doi.org/10.2903/j.efsa.2005.267

Eicher S.D., Rostagno M.H., Lay D.C. 2017. Feed withdrawal and transportation effects on Salmonella enterica levels in market-weight pigs. J. Anim. Sci., 95: 2848-2858. https://doi.org/10.2527/jas.2017.1454

Eikelenboom G., Bolink A.H., Sybesma W. 1991. Effects of feed withdrawal before delivery on pork quality and carcass yield. Meat Sci., 29: 25-30. https://doi.org/10.1016/0309-1740(91)90020-Q

Faucitano L., Chevillon P, Ellis M. 2010. Effects of feed withdrawal prior to slaughter and nutrition on stomach weight, and carcass and meat quality in pigs. Livest. Sci., 127: 110-114. https://doi.org/10.1016/j.livsci.2009.10.002

Faucitano L., Saucier L., Correa J.A., Méthot S., Giguère A., Foury A., Mormède P., Bergeron R. 2006. Effect of feed texture, meal frequency and pre-slaughter fasting on carcass and meat quality, and urinary cortisol in pigs. Meat Sci., 74: 697-703. https://doi.org/10.1016/j.meatsci.2006.05.023

Faucitano L., Conte S., Pomar C., Paiano D., Duan Y., Zhang P., Drouin G., Rina S., Guay F., Devillers N. 2020. Application of extended feed withdrawal time preslaughter and its effects on animal welfare and carcass and meat quality of enriched-housed pigs. Meat Sci., 167: 108163. https://doi.org/10.1016/j.meatsci.2020.108163

Fazio F., Casella S., Giudice E., Giannetto C., Piccione G. 2015. Evaluation of secondary stress biomarkers during road transport in rabbit. Livest. Sci., 173: 106-110. https://doi.org/10.1016/j.livsci.2015.01.006

Friendship R.M., Melnichouk S.I., Dewey C.E. 2000. The use of omeprazole to alleviate stomach ulcers in swine during periods of feed withdrawal. Can. Vet. J., 41: 925-928.

Frobose H.L., Dritz S.S., Tokach M.D., Prusa K.J., DeRouchey J.M., Goodband R.D., Nelssen J.L. 2014. Effects of preslaughter feed withdrawal time on finishing pig carcass, body weight gain, and food safety characteristics in a commercial environment. J. Anim. Sci., 92: 3693-3700. https://doi.org/10.2527/jas.2013-7367

Gouet P., Fonty G. 1979. Changes in the digestive microflora of holoxenic * rabbits from birth until adulthood. Ann. Biol. Anim. Biochim. Biophys., 19: 553-566. https://doi.org/10.1051/rnd:19790501

Hamilton D.N., Miller K.D., Ellis M., McKeith F.K., Wilson E.R. 2003. Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci., 81: 2206-2212. https://doi.org/10.2527/2003.8192206x

Hamlin J. 2011. Assisted feeding in rabbits. Vet. Nurse., 2: 394-401. https://doi.org/10.12968/vetn.2011.2.7.394

Hansen R, Russell R.K., Reiff C., Louis P., McIntosh F., Berry S.H., Mukhopadhya I., Bisset W.M., Barclay A.R., Bishop J., Flynn D.M., McGrogan P., Loganathan S., Mahdi G., Flint H.J., El-Omar E.M., Hold G.L. 2012. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol., 107: 1913-1922. https://doi.org/10.1038/ajg.2012.335

Hauguel S., Leturque A., Gilbert M. Girard J. 1988. Effects of pregnancy and fasting on muscle glucose utilization in the rabbit. Am. J. Obstet. Gynecol., 158: 1215-1218. https://doi.org/10.1016/0002-9378(88)90257-8

Heilig, H.G.H.J., Zoetendal E.G., Vaughan E.E., Marteau P., Akkermans A.D.L., de Vos W.M. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol., 68: 114-123. https://doi.org/10.1128/AEM.68.1.114-123.2002

Held S.D.E., Turner R.J., Wootton R.J. 1995. Choices of laboratory rabbits for individual or group-housing. Appl. Anim. Behav. Sci., 46: 81-91. https://doi.org/10.1016/0168-1591(95)00632-X

Hulot F., Ouhayoun J. 1999. Muscular pH and related traits in rabbits: A review. World Rabbit Sci., 7: 15-36. https://doi.org/10.4995/wrs.1999.378

Karaca S., Erdoğan S., Kor D., Kor A. 2016. Effects of pre-slaughter diet/management system and fasting period on physiological indicators and meat quality traits of lambs. Meat Sci., 116: 67-77. https://doi.org/10.1016/j.meatsci.2016.01.014

Kassambara A., Mundt F. 2020. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. https://CRAN.R-project.org/package=factoextra

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F.O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res., 41: 1-11. https://doi.org/10.1093/nar/gks808

Kohl K.D., Amaya J., Passement C.A., Dearing M.D., McCue M.D. 2014. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol., 90: 883-894. https://doi.org/10.1111/1574–6941.12442

Kohler R., Krause G., Beutin L., Stephan R., Zweifel C. 2008. Shedding of food-borne pathogens and microbiological carcass contamination in rabbits at slaughter. Vet. Microbiol., 132:149-157. https://doi.org/10.1016/j.vetmic.2008.04.020

Kola J.J., Awosanya B., Adebua B.A. 1994. The effects of preslaughter withholding of feed and water from rabbits on their carcass yield and meat quality. Niger. J. Anim. Prod., 21:164-169. https://doi.org/10.51791/njap.v21i1.1186

Koné A.P., Cinq-Mars D., Desjardins Y., Guay F., Gosselin A., Saucier L. 2016. Effects of plant extracts and essential oils as feed supplements on quality and microbial traits of rabbit meat. World Rabbit Sci., 24: 107-119. https://doi.org/10.4995/wrs.2016.3665

Kozma C., Macklin W., Cummins M., Mauer R. 1974. Anatomy, physiology and Biochemistry of the rabbit. In: Weisbroth S.H., Flatt E. and Kraus A. L. (ed). The biology of the laboratory rabbit. Academic Press Inc, San Francisco, NY, 50-73. https://doi.org/10.1016/B978-0-12-742150-6.50008-6

Kurina I, Popenko A., Klimenko N., Koshechkin S., Chuprikova L., Filipenko M., Tyakht A., Alexeev D. 2020. Development of qPCR platform with probes for quantifying prevalent and biomedically relevant human gut microbial taxa. Mol. Cell. Probes., 52: 101570. https://doi.org/10.1016/j.mcp.2020.101570

Kylie J., Weese J.S., Turner P.V. 2018. Comparison of the fecal microbiota of domestic commercial meat, laboratory, companion, and shelter rabbits (Oryctolagus cuniculi ). BMC Vet. Res., 14: 143-158. https://doi.org/10.1186/s12917-018-1464-6

Lang J., Blikslager A., Regina D., Eisemann J., Argenzio R. 1998. Synergistic effect of hydrochloric acid and bile acids on the pars esophageal mucosa of the porcine stomach. Am. J. Vet. Res., 59: 1170-1176.

Langlois I., Planché A., Boysen S.R., Abeysekara S., Zello G.A. 2014. Blood concentrations of d - and l -lactate in healthy rabbits. J. Small Anim. Pract., 55: 451-456. https://doi.org/10.1111/jsap.12247

Larivière-Lajoie A.-S., Cinq-Mars D., Guay F., Binggeli S., Dalmau A., Saucier L. 2021. Hierarchical clustering as a tool to develop a classification scheme for rabbit meat quality. World Rabbit Sci., 29: 129-149. https://doi.org/10.4995/wrs.2021.14368

Lay D.C., Friend T.H., Randel R.D., Bowers C.L., Grissom K.K., Neuendorff D.A., Jenkins O.C. 1998. Effects of restricted nursing on physiological and behavioral reactions of Brahman calves to subsequent restraint and weaning. Appl. Anim. Behav. Sci., 56: 109-119. https://doi.org/10.1016/S0168-1591(97)00103-2

Lê S., Josse J., Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. J. Stats. Soft., 25: 1-18. https://doi.org/10.18637/jss.v025.i01

Lebas, F., Gidenne, T. 2006. Feeding behaviour in rabbits. In Proc.: 3th International Rabbit Production Symposium, 2 November 2005, Villareal, Portugual, 1-19.

Lebas F., Coudert P., Rouvier R., de Rochambeau H. 1997. The rabbit: husbandry, health and production. In: FAO (ed). Animal Production and Health Series, Rome, Italy.

Lee D.K. 2020. Data transformation: a focus on the interpretation. Korean. J. Anesthesiol., 73: 503-508. https://doi.org/10.4097/kja.20137

Leheska J.M., Wulf D.M., Maddock R.J. 2002. Effects of fasting and transportation on pork quality development and extent of postmortem metabolism. J. Anim. Sci., 80: 3194-3202. https://doi.org/10.2527/2002.80123194x

Lozupone C., Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol., 71: 8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

Mach N., Bach A., Velarde A., Devant, M. 2008. Association between animal, transportation, slaughterhouse practices, and meat pH in beef. Meat Sci., 78: 232‑238. https://doi.org/10.1016/j.meatsci.2007.06.021

Marín-García P.J., López-Luján M.C., Ródenas L., Martínez-Paredes E.M., Blas E., Pascual J.J. 2020. Plasma urea nitrogen as an indicator of amino acid imbalance in rabbit diets. World Rabbit Sci., 28: 63-72. https://doi.org/10.4995/wrs.2020.12781

Martín-Peláez S., Martín-Orúe S.M., Pérez J.F., Fàbrega E., Tibau J., Gasa J. 2008. Increasing feed withdrawal and lairage times prior to slaughter decreases the gastrointestinal tract weight but favours the growth of cecal Enterobacteriaceae in pigs. Livest. Sci., 119: 70-76. https://doi.org/10.1016/j.livsci.2008.02.012

Martín-Peláez S., Peralta B., Creus E., Dalmau A., Velarde A., Pérez J.F., Mateu E., Martín-Orúe S.M. 2009. Different feed withdrawal times before slaughter influence caecal fermentation and faecal Salmonella shedding in pigs. Vet. J., 182: 469-473. https://doi.org/10.1016/j.tvjl.2008.08.002

Masoero G., Riccioni L., Bergoglio G., Napoletano F. 1992. Implications of fasting and of transportation for a high quality rabbit meat product. In Proc.: 5th World Rabbit Congress, 25-30 July 1992, Corvallis, USA, 841-847.

Mazzone G., Vignola G., Giammarco M., Manetta A.C., Lambertini, L. 2010. Effects of loading methods on rabbit welfare and meat quality. Meat Sci, 85: 33‑39. https://doi.org/10.1016/j.meatsci.2009.11.019

McMurdie P.J., Holmes S. 2013. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. M. Watson, editor. PLoS ONE, 8: e61217. https://doi.org/10.1371/journal.pone.0061217

Melillo A. 2007. Rabbit Clinical Pathology. J. Exot. Pet Med., 16: 135-145. https://doi.org/10.1053/j.jepm.2007.06.002

Monin G., Sellier P. 1985. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed. Meat Sci., 13: 49-63. https://doi.org/10.1016/S0309-1740(85)80004-8

Nakyinsige K., Sazili A.Q., Aghwan Z.A., Zulkifli I., Goh Y.M., Fatimah A.B. 2013. Changes in blood constituents of rabbits subjected to transportation under hot, humid tropical conditions. Asian-Australas. J. Anim. Sci., 26: 874-878. https://doi.org/10.5713/ajas.2012.12652

Nattress F.M., Murray A.C. 2000. Effect of antemortem feeding regimes on bacterial numbers in the stomachs and ceca of pigs. J. Food Prot., 63: 1253-1257. https://doi.org/10.4315/0362-028X-63.9.1253

NFACC. 2018. Code of practice for the care and handling of rabbits. National Farm Animal Care Council. https://www.nfacc.ca/pdfs/codes/rabbit_code_of_practice.pdf. Accessed November 2021.

Nijdam E., Delezie E., Lambooij E., Nabuurs M.J., Decuypere E., Stegeman J.A. 2005. Feed withdrawal of broilers before transport changes plasma hormone and metabolite concentrations. Poult. Sci., 84: 1146-1152. https://doi.org/10.1093/ps/84.7.1146

Oksanen J., Blanchet G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., Wagner H. 2020. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan

Pang J., Liu Z., Zhang Q., Lu X., Qi Q. 2020. Systematic analysis of Escherichia coli isolates from sheep and cattle suggests adaption to the rumen niche. Appl Environ Microbiol., 86: e01417-20. https://doi.org/10.1128/AEM.01417-20

Petracci M., Bianchi M., Biguzzi G., Cavani C. 2010. Preslaughter risk factors associated with mortality and bruising in rabbits. World Rabbit Sci., 18: 219-228. https://doi.org/10.4995/wrs.2010.781

Piattoni F., Demeyer D., Maertens L. 1997. Fasting effects on in vitro fermentation pattern of rabbit caecal contents. World Rabbit Sci., 5: 23-26. https://doi.org/10.4995/wrs.1997.314

Prodan A., Tremaroli V., Brolin H., Zwinderman A.H., Nieuwdorp M., Levin E. 2020. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. Seo J.S. (ed.). PLOS ONE, 15: e0227434. https://doi.org/10.1371/journal.pone.0227434

Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glockner F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res., 35: 7188-7196. https://doi.org/10.1093/nar/gkm864

R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Rees Davies R., Rees Davies J.A.E. 2003. Rabbit gastrointestinal physiology. Vet. Clin. Exot. Anim., 6: 139-153. https://doi.org/10.1016/S1094-9194(02)00024-5

Reid C.-A., Avery S.M., Warriss P., Buncic S. 2002. The effect of feed withdrawal on Escherichia coli shedding in beef cattle. Food Control., 13: 393-398. https://doi.org/10.1016/S0956-7135(01)00096-2

Resendiz-Nava C.N., Silva-Rojas H.V., Rebollar-Alviter A., Rivera-Pastrana D.M., Mercado-Silva E.M., Nava G.M. 2022. A comprehensive evaluation of enterobacteriaceae primer sets for analysis of host-associated microbiota. Pathogens., 11: 1-11. https://doi.org/10.3390/pathogens11010017

Rocha L.M., Dionne A., Saucier L., Nannoni E., Faucitano L. 2015. Hand-held lactate analyzer as a tool for the realtime measurement of physical fatigue before slaughter and pork quality prediction. Animal., 9: 707-714. https://doi.org/10.1017/S1751731114002766

Rushen J., Taylor A.A., de Passillé A.M. 1999. Domestic animals’ fear of humans and its effect on their welfare. Appl. Anim. Behav. Sci., 65: 285-303. https://doi.org/10.1016/S0168-1591(99)00089-1

Savenije B., Lambooij E., Gerritzen M., Venema K., Korf J. 2002. Effects of feed deprivation and transport on preslaughter blood metabolites, early postmortem muscle metabolites, and meat quality. Poult. Sci., 81: 699-708. https://doi.org/10.1093/ps/81.5.699

Schierack P., Walk N., Reiter K., Weyrauch K.D., Wieler L.H. 2007. Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs. Microbiology., 153: 3830-3837. https://doi.org/10.1099/mic.0.2007/010173-0

van Schalkwyk S.J., Hoffman L.C., Cloete S.W.P., Mellett F.D. 2005. The effect of feed withdrawal during lairage on meat quality characteristics in ostriches. Meat Sci., 69: 647-651. https://doi.org/10.1016/j.meatsci.2004.10.016

Schliep, K.P. 2011. phangorn: phylogenetic analysis in R. Bioinformatics., 27: 592-593. https://doi.org/10.1093/bioinformatics/btq706

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol., 12:1-18. https://doi.org/10.1186/gb-2011-12-6-r60

Shang Y., Kumar S., Oakley B., Kim W.K. 2018. Chicken Gut Microbiota: Importance and Detection Technology. Front. Vet. Sci., 5: 1-11. https://doi.org/10.3389/fvets.2018.00254

Szeto A., Gonzales J.A., Spitzer S.B., Levine J.E., Zaias J., Saab P.G., Schneiderman N., McCabe P.M. 2004. Circulating levels of glucocorticoid hormones in WHHL and NZW rabbits: circadian cycle and response to repeated social encounter. Psychoneuroendocrinology., 29: 861-866. https://doi.org/10.1016/S0306-4530(03)00153-7

Terlouw E.M.C., Boissy A., Blinet P. 1998. Behavioural responses of cattle to the odours of blood and urine from conspecifics and to the odour of faeces from carnivores. Appl. Anim. Behav. Sci., 57: 9-21. https://doi.org/10.1016/S0168-1591(97)00122-6

Thompson K., Burkholder K., Patterson J., Applegate T.J. 2008. Microbial ecology shifts in the ileum of broilers during feed withdrawal and dietary manipulations. Poult. Sci. 87: 1624-1632. https://doi.org/10.3382/ps.2007-00324

Trocino A., Zomeño C., Birolo M., Di Martino G., Stefani A., Bonfanti L., Bertotto D., Gratta F., Xiccato G. 2018. Impact of pre-slaughter transport conditions on stress response, carcass traits, and meat quality in growing rabbits. Meat Sci., 146: 68-74. https://doi.org/10.1016/j.meatsci.2018.07.035

Tuleda F., Lebas F. 2006. Modalités du rationnement des lapins en engraissement. Effets du mode de distribution de la ration quotidienne sur la vitesse de croissance, le comportement alimentaire et l’homogénéité des poids. Cuniculture Magazine., 33: 21-27.

Velasco-Galilea M., Piles, M. Viñas M., Rafel O., González-Rodríguez O., Guivernau M., Sánchez J.P. 2018. Rabbit microbiota changes throughout the intestinal tract. Front. Microbiol., 9: 1-14. https://doi.org/10.3389/fmicb.2018.02144

Verga M., Luzi F., Petracci M., Cavani C. 2009. Welfare aspects in rabbit rearing and transport. Ital. J. Anim. Sci., 8: 191-204. https://doi.org/10.4081/ijas.2009.s1.191

Vernay M., Raynaud P., Salse A. 1975. Répartition des acides gras volatils dans le tube digestif du lapin domestique. II. Lapins soumis au jeûne. Ann. Rech. vétér., 6: 369-377.

Walter J., Hertel C., Tannock G.W., Lis C.M., Munro K., Hammes W.P. 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 67: 2578-2585. https://doi.org/10.1128/AEM.67.6.2578-2585.2001

Wang X., Li J., Cong J., Chen X., Zhu X., Zhang L., Gao F., Zhou G. 2017. Preslaughter transport effect on broiler meat quality and post-mortem glycolysis metabolism of muscles with different fiber types. J. Agric. Food Chem., 65: 10310-10316. https://doi.org/10.1021/acs.jafc.7b04193

Warriss P.D. 1998. Choosing appropriate space allowances for slaughter pigs transported by road: a review. Vet. Rec., 142: 449‑454. https://doi.org/10.1136/vr.142.17.449

Warriss P.D. 2010. Meat science, an introductory text (2nd ed). CABI Publishing, Wallingford, UK, pp. 234. https://doi.org/10.1079/9781845935931.0000

Warriss P.D., Kestin S.C., Brown S.N., Bevis E.A. 1988. Depletion of glycogen reserves in fasting broiler chickens. Br. Poult. Sci., 29: 149-154. https://doi.org/10.1080/00071668808417036

Warriss P.D., Brown S.N., Adams S.J.M., Corlett I.K. 1994. Relationships between subjective and objective assessments of stress at slaughter and meat quality in pigs. Meat Sci., 38: 329-340. https://doi.org/10.1016/0309-1740(94)90121-X

Wittmann W., Ecolan P., Levasseur P., Fernandez X. 1994. Fastinginduced glycogen depletion in different fibre types of red and white pig muscles—relationship with ultimate pH. J. Sci. Food Agric., 66: 257-266. https://doi.org/10.1002/jsfa.2740660222

Wright E.S. 2016. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J., 8: 352-359. https://doi.org/10.32614/RJ-2016-025

Xiong G.-Y., Xu X.-L., Zhu X.-B., Zhou G.-H., Shi, S. 2008. Effects of withholding food and/or water supply on the quality of meat from Rex rabbits. J. Muscle Foods., 19: 374-384. https://doi.org/10.1111/j.1745-4573.2008.00123.x

Żelechowska E., Przybylski, W. 2015. Effect of feeding season on pH, glycolytic potential, colour and myofibrillar proteins in rabbit meat. Med. Weter., 71: 769-772.

Zeng B., Han S., Wang P., Wen B., Jian W., Guo W., Yu Z., Du D., Fu X., Kong F., Yang M., Si X., Zhao J., Li Y. 2015. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep., 5: 1-8. https://doi.org/10.1038/srep09342

Downloads

Published

2023-12-26

Issue

Section

Meat