Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit

Authors

DOI:

https://doi.org/10.4995/wrs.2022.17353

Keywords:

rabbit, WIF1, Angora rabbit, hair follicle, bioinformatics, Wnt signalling pathway

Abstract

Growth and development of hair follicles (HF) is a complex and dynamic process in most mammals. As HF growth and development regulate rabbit wool yield, exploring the role of genes involved in HF growth and development may be relevant. In this study, the coding sequence of the Angora rabbit (Oryctolagus cuniculus) WIF1 gene was cloned. The length of the coding region sequence was found to be 1140 bp, which encodes 379 amino acids. Bioinformatics analysis indicated that the WIF1 protein was unstable, hydrophilic and located in the extracellular region, contained a putative signal peptide and exhibited a high homology in different mammals. Moreover, WIF1 was significantly downregulated in the high wool production in the Angora rabbit group. Overexpression and knockdown studies revealed that WIF1 regulates HF growth and development-related genes and proteins, such as LEF1 and CCND1. WIF1 activated β-catenin/TCF transcriptional activity, promoted cell apoptosis and inhibited cellular proliferation. These results indicate that WIF1 might be important for HF development. This study, therefore, provides a theoretical foundation for investigating WIF1 in HF growth and development.

Downloads

Download data is not yet available.

Author Biographies

Bohao Zhao, Yangzhou University

College of Animal Science and Technology

Jiali Li, Yangzhou University

College of Animal Science and Technology

Xiyu Zhang, Yangzhou University

College of Animal Science and Technology

Zhiyuan Bao, Yangzhou University

College of Animal Science and Technology

Yang Chen, Yangzhou University

College of Animal Science and Technology

Xinsheng Wu, Yangzhou University

College of Animal Science and Technology, Yangzhou University

---

Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University

References

Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Dev. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3

Bai L., Sun H., Jiang W., Yang L., Liu G., Zhao X., Hu H., Wang J., Gao S. 2021. DNA methylation and histone acetylation are involved in Wnt10b expression during the secondary hair follicle cycle in Angora rabbits. J. Anim. Phys. Anim. Nutr., 105: 599-609. https://doi.org/10.1111/jpn.13481

Blom N., Gammeltoft S., Brunak S. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol., 294: 1351-1362. https://doi.org/10.1006/jmbi.1999.3310

Botchkarev V.A., Sharov A.A. 2010. BMP signaling in the control of skin development and hair follicle growth. Differentiation, 72: 512-526. https://doi.org/10.1111/j.1432-0436.2004.07209005.x

Chen Y., Fan Z., Wang X., Mo M., Zeng S.B., Xu R.H., Wang X., Wu Y. 2020. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res. Ther., 11: 144. https://doi.org/10.1186/s13287-020-01650-6

DasGupta R., Fuchs E. 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 126: 4557-4568. https://doi.org/10.1242/dev.126.20.4557

Deléage G. 2017. ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments. Bioinformatics, 33: 3991-3992. https://doi.org/10.1093/bioinformatics/btx521

Gasteiger E., Hoogland C., Gattiker A., Wilkins M.R., Appel R.D., Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer: pp. 571-607. https://doi.org/10.1385/1-59259-890-0:571

Gledhill K., Gardner A., Jahoda C.A. 2013. Isolation and establishment of hair follicle dermal papilla cell cultures, Skin Stem Cells. Springer: pp. 285-292. https://doi.org/10.1007/978-1-62703-330-5_22

Gupta R., Jung E., Brunak S. 2004. Prediction of N-glycosylation sites in human proteins. ResearchGate, 46: 203-206. Hardy M.H. 1992. The secret life of the hair follicle. Trends Genet., 8: 55-61. https://doi.org/10.1016/0168-9525(92)90044-5

Horton P., Park K.J., Obayashi T., Fujita N., Harada H., Adams-Collier C., Nakai K. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Res., 35: W585-W587. https://doi.org/10.1093/nar/gkm259

Hu Y.A., Zhao C.J. 2010. Research progress of Wif1 in development of nervous system. J. Zhejiang Univ. Med. Sci., 39: 93-96.

Huang Y., Du Q., Wu W., She F., Chen Y. 2016. Rescued expression of WIF-1 in gallbladder cancer inhibits tumor growth and induces tumor cell apoptosis with altered expression of proteins. Mol. Med. Rep., 14: 2573-2581. https://doi.org/10.3892/mmr.2016.5532

Hunter T., Karin M. 1992. The regulation of transcription by phosphorylation. Cell, 70: 375-387. https://doi.org/10.1016/0092-8674(92)90162-6

Julenius K., Mølgaard A., Gupta R., Brunak S. 2005. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153-164. https://doi.org/10.1093/glycob/cwh151

Kim B.K., Yoon S.K. 2014. Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation. Annals Dermatol., 26: 79-87. https://doi.org/10.5021/ad.2014.26.1.79

Kiyozumi D., Osada A., Sugimoto N., Weber C.N., Ono Y., Imai T., Okada A., Sekiguchi K. 2011. Identification of genes expressed during hair follicle induction. J. Dermatol., 38: 674-679. https://doi.org/10.1111/j.1346-8138.2010.01050.x

Kratochwil K., Dull M., Farinas I., Galceran J., Grosschedl R. 1996. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev., 10: 1382-1394. https://doi.org/10.1101/gad.10.11.1382

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096

Lin C., Liu Y., Huang K., Chen X., Cai B., Li H., Yuan Y., Zhang H., Li Y. 2014. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem. Biophys. Res. Commun., 453: 508-514. https://doi.org/10.1016/j.bbrc.2014.09.119

Liu Y.L., Yang H.P., Zhou X.D., Gong L., Tang C.L., Wang H.J., 2011. The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Curr. Cancer Drug Targets, 11: 1098-1110. https://doi.org/10.2174/156800911798073041

Lu D., Dong W., Zhang X., Quan X., Bao D., Lu Y., Zhang L. 2013. WIF1 causes dysfunction of heart in transgenic mice. Transgenic Res., 22: 1179-1189. https://doi.org/10.1007/s11248-013-9738-z

Mashhadikhan M., Kheiri H., Dehghanifard A. 2020. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J. Oral Biosci., 62: 349-356. https://doi.org/10.1016/j.job.2020.08.001

Millar S.E., Willert K., Salinas P.C., Roelink H., Nusse R., Sussman D.J., Barsh G.S. 1999. WNT signaling in the control of hair growth and structure. Develop. Biol., 207: 133-149. https://doi.org/10.1006/dbio.1998.9140

Möller S., Croning M.D., Apweiler R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17: 646-653. https://doi.org/10.1093/bioinformatics/17.7.646

Ng R.C., Matsumaru D., Ho A.S., Garcia-Barceló M.M., Yuan Z.W., Smith D., Kodjabachian L., Tam P.K., Yamada G., Lui V.C. 2014. Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations. Cell Death Differ., 21: 978-989. https://doi.org/10.1038/cdd.2014.20

Ohtsubo K., Marth J.D. 2006. Glycosylation in cellular mechanisms of health and disease. Cell, 126: 855-867. https://doi.org/10.1016/j.cell.2006.08.019

Oznurlu Y., Celik I., Sur E., Telatar T., Ozparlak H. 2009. Comparative skin histology of the white New Zealand and Angora rabbits. J. Anim. Vet. Adv., 8: 1694-1701.

Petersen T.N., Brunak S., Von Heijne G., Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785. https://doi.org/10.1038/nmeth.1701

Powis G., Kooistra K. 1987. Doxorubicin-induced hair loss in the Angora rabbit: a study of treatments to protect against the hair loss. Cancer Chemother. Pharmacol., 20: 291-296. https://doi.org/10.1007/BF00262579

Ramachandran I., Thavathiru E., Ramalingam S., Natarajan G., Mills W.K., Benbrook D.M., Zuna R., Lightfoot S., Reis A., Anant S., Queimado L. 2012. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 31: 2725-2737. https://doi.org/10.1038/onc.2011.455

Rendl M., Lewis L., Fuchs E. 2005. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol., 3: e331. https://doi.org/10.1371/journal.pbio.0030331

Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative C T method. Nat. Protoc., 3: 1101. https://doi.org/10.1038/nprot.2008.73

Schneider M.R., Schmidt-Ullrich R., Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol., 19: R132-R142. https://doi.org/10.1016/j.cub.2008.12.005

Stenn K.S., Paus R. 2001. Controls of Hair Follicle Cycling. Physiol. Rev., 81: 449. https://doi.org/10.1152/physrev.2001.81.1.449

Ubersax J.A., Ferrell Jr J.E. 2007. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol., 8: 530-541. https://doi.org/10.1038/nrm2203

Wang L.C., Liu Z.Y., Shapiro R., Yang J., Sizing I., Rayhorn P., Garber E.A., Benjamin C.D., Williams K.P., Taylor F.R. 2000. Conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J. Investig. Dermatol., 114: 901-908. https://doi.org/10.1046/j.1523-1747.2000.00951.x

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 46: W296-W303. https://doi.org/10.1093/nar/gky427

Wissmann C., Wild P.J., Kaiser S., Roepcke S., Stoehr R., Woenckhaus M., Kristiansen G., Hsieh J.C., Hofstaedter F., Hartmann A., Knuechel R., Rosenthal A., Pilarsky C. 2003. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J. Pathol., 201: 204-212. https://doi.org/10.1002/path.1449

Xu X., Lyle S., Liu Y., Solky B., Cotsarelis G. 2003. Differential Expression of Cyclin D1 in the Human Hair Follicle. Am. J. Pathol., 163: 969-978. https://doi.org/10.1016/S0002-9440(10)63456-6

Zhao B., Chen Y., Hu S., Yang N., Wang M., Liu M., Li J., Xiao Y., Wu X. 2019a. Systematic Analysis of Non-coding RNAs Involved in the Angora Rabbit (Oryctolagus cuniculus) Hair Follicle Cycle by RNA Sequencing. Front. Genet., 10: 407. https://doi.org/10.3389/fgene.2019.00407

Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M., Hu S., Li J., Wu X. 2019b. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J. Cell. Physiol., 234: 20329-20341. https://doi.org/10.1002/jcp.28633

Zhao B., Li J., Chen Q., Yang N., Bao Z., Hu S., Chen Y., Wu X. 2021. A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit. Genes, 12: 24. https://doi.org/10.3390/genes12010024

Zhou P., Byrne C., Jacobs J., Fuchs E. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 9: 700-713. https://doi.org/10.1101/gad.9.6.700

Downloads

Published

2022-09-30

Issue

Section

Genetics

Funding data