Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit
DOI:
https://doi.org/10.4995/wrs.2022.17353Keywords:
rabbit, WIF1, Angora rabbit, hair follicle, bioinformatics, Wnt signalling pathwayAbstract
Growth and development of hair follicles (HF) is a complex and dynamic process in most mammals. As HF growth and development regulate rabbit wool yield, exploring the role of genes involved in HF growth and development may be relevant. In this study, the coding sequence of the Angora rabbit (Oryctolagus cuniculus) WIF1 gene was cloned. The length of the coding region sequence was found to be 1140 bp, which encodes 379 amino acids. Bioinformatics analysis indicated that the WIF1 protein was unstable, hydrophilic and located in the extracellular region, contained a putative signal peptide and exhibited a high homology in different mammals. Moreover, WIF1 was significantly downregulated in the high wool production in the Angora rabbit group. Overexpression and knockdown studies revealed that WIF1 regulates HF growth and development-related genes and proteins, such as LEF1 and CCND1. WIF1 activated β-catenin/TCF transcriptional activity, promoted cell apoptosis and inhibited cellular proliferation. These results indicate that WIF1 might be important for HF development. This study, therefore, provides a theoretical foundation for investigating WIF1 in HF growth and development.
Downloads
References
Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Dev. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
Bai L., Sun H., Jiang W., Yang L., Liu G., Zhao X., Hu H., Wang J., Gao S. 2021. DNA methylation and histone acetylation are involved in Wnt10b expression during the secondary hair follicle cycle in Angora rabbits. J. Anim. Phys. Anim. Nutr., 105: 599-609. https://doi.org/10.1111/jpn.13481
Blom N., Gammeltoft S., Brunak S. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol., 294: 1351-1362. https://doi.org/10.1006/jmbi.1999.3310
Botchkarev V.A., Sharov A.A. 2010. BMP signaling in the control of skin development and hair follicle growth. Differentiation, 72: 512-526. https://doi.org/10.1111/j.1432-0436.2004.07209005.x
Chen Y., Fan Z., Wang X., Mo M., Zeng S.B., Xu R.H., Wang X., Wu Y. 2020. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res. Ther., 11: 144. https://doi.org/10.1186/s13287-020-01650-6
DasGupta R., Fuchs E. 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 126: 4557-4568. https://doi.org/10.1242/dev.126.20.4557
Deléage G. 2017. ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments. Bioinformatics, 33: 3991-3992. https://doi.org/10.1093/bioinformatics/btx521
Gasteiger E., Hoogland C., Gattiker A., Wilkins M.R., Appel R.D., Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer: pp. 571-607. https://doi.org/10.1385/1-59259-890-0:571
Gledhill K., Gardner A., Jahoda C.A. 2013. Isolation and establishment of hair follicle dermal papilla cell cultures, Skin Stem Cells. Springer: pp. 285-292. https://doi.org/10.1007/978-1-62703-330-5_22
Gupta R., Jung E., Brunak S. 2004. Prediction of N-glycosylation sites in human proteins. ResearchGate, 46: 203-206. Hardy M.H. 1992. The secret life of the hair follicle. Trends Genet., 8: 55-61. https://doi.org/10.1016/0168-9525(92)90044-5
Horton P., Park K.J., Obayashi T., Fujita N., Harada H., Adams-Collier C., Nakai K. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Res., 35: W585-W587. https://doi.org/10.1093/nar/gkm259
Hu Y.A., Zhao C.J. 2010. Research progress of Wif1 in development of nervous system. J. Zhejiang Univ. Med. Sci., 39: 93-96.
Huang Y., Du Q., Wu W., She F., Chen Y. 2016. Rescued expression of WIF-1 in gallbladder cancer inhibits tumor growth and induces tumor cell apoptosis with altered expression of proteins. Mol. Med. Rep., 14: 2573-2581. https://doi.org/10.3892/mmr.2016.5532
Hunter T., Karin M. 1992. The regulation of transcription by phosphorylation. Cell, 70: 375-387. https://doi.org/10.1016/0092-8674(92)90162-6
Julenius K., Mølgaard A., Gupta R., Brunak S. 2005. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153-164. https://doi.org/10.1093/glycob/cwh151
Kim B.K., Yoon S.K. 2014. Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation. Annals Dermatol., 26: 79-87. https://doi.org/10.5021/ad.2014.26.1.79
Kiyozumi D., Osada A., Sugimoto N., Weber C.N., Ono Y., Imai T., Okada A., Sekiguchi K. 2011. Identification of genes expressed during hair follicle induction. J. Dermatol., 38: 674-679. https://doi.org/10.1111/j.1346-8138.2010.01050.x
Kratochwil K., Dull M., Farinas I., Galceran J., Grosschedl R. 1996. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev., 10: 1382-1394. https://doi.org/10.1101/gad.10.11.1382
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
Lin C., Liu Y., Huang K., Chen X., Cai B., Li H., Yuan Y., Zhang H., Li Y. 2014. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem. Biophys. Res. Commun., 453: 508-514. https://doi.org/10.1016/j.bbrc.2014.09.119
Liu Y.L., Yang H.P., Zhou X.D., Gong L., Tang C.L., Wang H.J., 2011. The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Curr. Cancer Drug Targets, 11: 1098-1110. https://doi.org/10.2174/156800911798073041
Lu D., Dong W., Zhang X., Quan X., Bao D., Lu Y., Zhang L. 2013. WIF1 causes dysfunction of heart in transgenic mice. Transgenic Res., 22: 1179-1189. https://doi.org/10.1007/s11248-013-9738-z
Mashhadikhan M., Kheiri H., Dehghanifard A. 2020. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J. Oral Biosci., 62: 349-356. https://doi.org/10.1016/j.job.2020.08.001
Millar S.E., Willert K., Salinas P.C., Roelink H., Nusse R., Sussman D.J., Barsh G.S. 1999. WNT signaling in the control of hair growth and structure. Develop. Biol., 207: 133-149. https://doi.org/10.1006/dbio.1998.9140
Möller S., Croning M.D., Apweiler R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17: 646-653. https://doi.org/10.1093/bioinformatics/17.7.646
Ng R.C., Matsumaru D., Ho A.S., Garcia-Barceló M.M., Yuan Z.W., Smith D., Kodjabachian L., Tam P.K., Yamada G., Lui V.C. 2014. Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations. Cell Death Differ., 21: 978-989. https://doi.org/10.1038/cdd.2014.20
Ohtsubo K., Marth J.D. 2006. Glycosylation in cellular mechanisms of health and disease. Cell, 126: 855-867. https://doi.org/10.1016/j.cell.2006.08.019
Oznurlu Y., Celik I., Sur E., Telatar T., Ozparlak H. 2009. Comparative skin histology of the white New Zealand and Angora rabbits. J. Anim. Vet. Adv., 8: 1694-1701.
Petersen T.N., Brunak S., Von Heijne G., Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785. https://doi.org/10.1038/nmeth.1701
Powis G., Kooistra K. 1987. Doxorubicin-induced hair loss in the Angora rabbit: a study of treatments to protect against the hair loss. Cancer Chemother. Pharmacol., 20: 291-296. https://doi.org/10.1007/BF00262579
Ramachandran I., Thavathiru E., Ramalingam S., Natarajan G., Mills W.K., Benbrook D.M., Zuna R., Lightfoot S., Reis A., Anant S., Queimado L. 2012. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 31: 2725-2737. https://doi.org/10.1038/onc.2011.455
Rendl M., Lewis L., Fuchs E. 2005. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol., 3: e331. https://doi.org/10.1371/journal.pbio.0030331
Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative C T method. Nat. Protoc., 3: 1101. https://doi.org/10.1038/nprot.2008.73
Schneider M.R., Schmidt-Ullrich R., Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol., 19: R132-R142. https://doi.org/10.1016/j.cub.2008.12.005
Stenn K.S., Paus R. 2001. Controls of Hair Follicle Cycling. Physiol. Rev., 81: 449. https://doi.org/10.1152/physrev.2001.81.1.449
Ubersax J.A., Ferrell Jr J.E. 2007. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol., 8: 530-541. https://doi.org/10.1038/nrm2203
Wang L.C., Liu Z.Y., Shapiro R., Yang J., Sizing I., Rayhorn P., Garber E.A., Benjamin C.D., Williams K.P., Taylor F.R. 2000. Conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J. Investig. Dermatol., 114: 901-908. https://doi.org/10.1046/j.1523-1747.2000.00951.x
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 46: W296-W303. https://doi.org/10.1093/nar/gky427
Wissmann C., Wild P.J., Kaiser S., Roepcke S., Stoehr R., Woenckhaus M., Kristiansen G., Hsieh J.C., Hofstaedter F., Hartmann A., Knuechel R., Rosenthal A., Pilarsky C. 2003. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J. Pathol., 201: 204-212. https://doi.org/10.1002/path.1449
Xu X., Lyle S., Liu Y., Solky B., Cotsarelis G. 2003. Differential Expression of Cyclin D1 in the Human Hair Follicle. Am. J. Pathol., 163: 969-978. https://doi.org/10.1016/S0002-9440(10)63456-6
Zhao B., Chen Y., Hu S., Yang N., Wang M., Liu M., Li J., Xiao Y., Wu X. 2019a. Systematic Analysis of Non-coding RNAs Involved in the Angora Rabbit (Oryctolagus cuniculus) Hair Follicle Cycle by RNA Sequencing. Front. Genet., 10: 407. https://doi.org/10.3389/fgene.2019.00407
Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M., Hu S., Li J., Wu X. 2019b. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J. Cell. Physiol., 234: 20329-20341. https://doi.org/10.1002/jcp.28633
Zhao B., Li J., Chen Q., Yang N., Bao Z., Hu S., Chen Y., Wu X. 2021. A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit. Genes, 12: 24. https://doi.org/10.3390/genes12010024
Zhou P., Byrne C., Jacobs J., Fuchs E. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 9: 700-713. https://doi.org/10.1101/gad.9.6.700
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Bohao Zhao, Jiali Li, Xiyu Zhang, Zhiyuan Bao, Yang Chen, Xinsheng Wu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)".
Funding data
-
National Natural Science Foundation of China
Grant numbers 32102529