Molecular genetic diversity of some rabbit breeds based on mitochondrial 16S rRNA sequences

Mohammad Allam

https://orcid.org/0000-0001-8639-196X

Egypt

South Valley University

Zoology Department, Faculty of Science, South Valley University.

Dr. of Genetics

N.S. Mahrous

Egypt

South Valley University

Zoology Department, Faculty of Science, South Valley University
|

Accepted: 2021-06-15

|

Published: 2021-09-30

DOI: https://doi.org/10.4995/wrs.2021.15110
Funding Data

Downloads

Keywords:

rabbit Breeds, DNA, genetic diversity, mitochondrial 16S rRNA

Supporting agencies:

This research was not funded

Abstract:

The present study was performed to assess the genetic variations among six rabbit breeds in Egypt based on mitochondrial 16S rRNA sequences. The length of partial mitochondrial 16S rRNA in the six rabbit breeds ranged from 546 bp to 558 bp. The sequenced regions were submitted to GenBank/NCBI under accession numbers (MW052052 - MW052057). The average content of A+T was 57% in all breeds. Among breeds, the percentages of genetic distance values were ranged from 0.000 to 0.004. The highest P-distance (0.004) was found between the New Zealand White breed and all other breeds. The results support the suitability of mitochondrial 16S rRNA for genetic diversity analysis of rabbit breeds and the applicability for future research on genetic relationships and the phylogeny of rabbit breeds.

Show more Show less

References:

Badr O., Elshawaf I., Refaat M.H., Khalil M., El-Zarei M.F., Hassab M., Khalil E., Refaat M.H., El-Zarei M.F. 2016. Assessment of genetic variability among some rabbit breeds using RAPD-DNA technique. 3nd Int. Conf. Biotechnol. Appl. Agric. (ICBAA),1-5.

Badr O.A.M., El-Shawaf I.I.S., Khalil M.H.A., Refaat M.H., Ramadan S.I.A. 2019. Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds. World Rabbit Sci., 27: 135-141. https://doi.org/10.4995/wrs.2019.8923

Ben Larbi M., San-Cristobal M., Chantry-Darmon C.B.G. 2012. Genetic Diversity of Rabbit Populations in Tunisia Using Microsatellites Markers. In Proc.: 10 th World Rabbit Congress, Sept. 3 - 6, 2012, Sharm El-Sheikh, Egypt. 31-35.

Biju-Duval C., Ennafaa H., Dennebouy N., Monnerot M., Mignotte F., Soriguer R.C., Gaaïed A. El, Hili A. El, Mounolou J.C. 1991. Mitochondrial DNA evolution in lagomorphs: Origin of systematic heteroplasmy and organization of diversity in European rabbits. J. Mol. Evol., 33: 92-102. https://doi.org/10.1007/BF02100200

Carneiro M., Afonso S., Geraldes A., Garreau H., Bolet G., Boucher S., Tircazes A., Queney G., Nachman M.W., Ferrand N. 2011. The genetic structure of domestic rabbits. Mol. Biol. Evol., 28: 1801-1816. https://doi.org/10.1093/molbev/msr003

Chen C., Huang H., Yang H., Lai S., Yen N., Wu M., Huang M. 2011. Mitochondrial genome of Taiwan pig (Sus Scrofa). African J. Biotechnol. 10: 2556-2561.

Dooley J.J., Paine K.E., Garrett S.D., Brown H.M. 2004. Detection of meat species using TaqMan real-time PCR assays. Meat Sci., 68: 431-438. https://doi.org/10.1016/j.meatsci.2004.04.010

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32: 1792-1797. https://doi.org/10.1093/nar/gkh340

El-Bayomi K.M., Awad A., Saleh A.A. 2013. Genetic diversity and phylogenetic relationship among some rabbit breeds using random amplified polymorphic DNA markers. Life Sci. J., 10: 1449-1457.

El-Sabrout, K., Aggag S.A. 2015. Use of inter simple sequence repeats and protein markers in assessing genetic diversity and relationships among four rabbit genotypes. World Rabbit Sci., 23: 283-288. https://doi.org/10.4995/wrs.2015.3912

El Sayed A.H. 2010. Assessment of Genetic Variability among Some Rabbit Breeds by Random Amplified Polymorphic DNA (RAPD) - PCR. Master thesis, Fac. Vet. Med. Suez Canal Univ. Egypt.

Felsenstein J. 1985. Confidence Limits On Phylogenies: An Approach Using The Bootstrap. Evolution, 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Ferrand N. 1995. Variação genética de proteinas em populações de coelho (Oryctolagus cuniculus) Analise da diferenciação subespecifica, subestruturação, expansão sgeografica e domesticação. PhD Thesis, University of Porto (Portugal).

Galal O.A., Rehan M., Abd El-karim E.R. 2013. Analysis of genetic diversity within and among four rabbit genotypes using biochemical and molecular genetic markers. African J. Biotechnol., 12: 2830-2839.

Girish P.S., Anjaneyulu A.S.R., Viswas K.N., Anand M., Rajkumar N., Shivakumar B.M., Bhaskar S. 2004. Sequence analysis of mitochondrial 12S rRNA gene can identify meat species. Meat Sci., 66: 551-556. https://doi.org/10.1016/S0309-1740(03)00158-X

Grimal A., Safaa H.M., Mehaisen G.M.K. 2012. Phylogenetic Relationship Among Four Egyptian and One Spanish Rabbit Populations Based on. In 10 th World Rabbit Congr. - Sharm El- Sheikh –Egypt.September, 177-181.

Groeneveld L.F., Lenstra J.A., Eding H., Toro M.A., Scherf B., Pilling D., Negrini R., Finlay E.K., Jianlin H., Groeneveld E., Weigend S. 2010. Genetic diversity in farm animals - A review. Anim. Genet., 41: 6-31. https://doi.org/10.1111/j.1365-2052.2010.02038.x

Gupta A.K., Bhardwaj A., Supriya, Sharma P., Pal Y., Mamta, Kumar S. 2015. Mitochondrial DNA- a Tool for Phylogenetic and Biodiversity Search in Equines. J. Biodivers. Endanger. Species, S1: 1-8. https://doi.org/10.4172/2332-2543.S1.00

Khalil M.H., Baselga M. 2002. The Baladi rabbits.Rabbit Genetic Resources in Mediterranean Countries. Options Méditerranénnes, Ser. B, N. 3837-50.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120. https://doi.org/10.1007/BF01731581

Klomtong P., Phasuk Y., Duangjinda M. 2016. Animal Species Identification through High Resolution Melting Real Time PCR (HRM) of the Mitochondrial 16S RRNA Gene. Ann. Anim. Sci., 16: 415-424. https://doi.org/10.1515/aoas-2015-0074

Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol., 33: 1870-1874. https://doi.org/10.1093/molbev/msw054

Mitani T., Akane A., Tokiyasu T., Yoshimura S., Okii Y., Yoshida M. 2009. Identification of animal species using the partial sequences in the mitochondrial 16S rRNA gene. Leg. Med. (Tokyo).,11: S449-S450. https://doi.org/10.1016/j.legalmed.2009.02.002

Mohamed E.A., Abdelfattah M.G. 2018. Genetic Diversity Assessment Among Six Rabbit Breeds Using Rapd And Srap Markers. Egypt. J. Genet. Cytol., 47: 161-173.

Mougel F. 1997. Variation de trois types de marqueurs génétiques dans l’évolution de l’espèce Oryctolagus cuniculus: Aspects moléculaires et relations avec la biologie et la structure des populations. Univ. Paris- Sud, Orsaypp 306.

Owuor S.A., Mamati E.G., Kasili R.W. 2019. Origin, Genetic Diversity, and Population Structure of Rabbits (Oryctolagus cuniculus) in Kenya. Biomed Res. Int., 2019: 1-6. https://doi.org/10.1155/2019/7056940

Pakendorf B., Stoneking M. 2005. Mitochondrial DNA and human evolution. Annu. Rev. Genomics Hum. Genet., 6: 165-183. https://doi.org/10.1146/annurev.genom.6.080604.162249

Queney G. 2000. Histoire des populations et organisation sociale du lapin européen (Oryctolagus cuniculus) à travers l’étude de marqueurs microsatellites. Thèse de Doctorat Université Paris 7-Denis Diderot UFR de Biologie.

Rahimi G., Khanahmadi A., Nejati-Javaremi A., Smailkhanian S. 2005. Evaluation of genetic variability in a breeder flock of native chicken based on randomly amplified polymorphic DNA markers. Iran. J. Biotechnol., 3: 231-234.

Rojas M., González I., Fajardo V., Martín I., Hernández P.E., García T., Martín R. 2009. Authentication of meats from quail (Coturnix coturnix), pheasant (Phasianus colchicus), partridge (Alectoris spp.), and guinea fowl (Numida meleagris) using polymerase chain reaction targeting specific sequences from the mitochondrial 12S rRNA gene. Food Control, 20: 896-902. https://doi.org/https://doi.org/10.1016/j.foodcont.2008.12.011

Saikia D.P., Kalita D.J., Borah P., Sarma S., Dutta R., Rajkhowa D. 2016. Molecular characterization of the mitochondrial 16S rRNA gene of cattle, buffalo and yak. Vet. Arh., 86: 777-785.

Sarri C., Stamatis C., Sarafidou T., Galara I., Godosopoulos V., Kolovos M., Liakou C., Tastsoglou S., Mamuris Z. 2014. A new set of 16S rRNA universal primers for identification of animal species. Food Control, 43: 35-41. https://doi.org/https://doi.org/10.1016/j.foodcont.2014.02.036

Simon, C., Franke A., Martin A. 1991. The polymerase chain reaction: DNA extraction and amplification. In Molecular Techniques in taxonomy. Eds. G. M. Hewitt, A. W. B. Johnst. J. P. W. Young. NATO AS1 Ser. H 57 329 35557, 329 355. https://doi.org/10.1007/978-3-642-83962-7_22

van der Kuyl A.C., Kuiken C.L., Dekker J.T., Goudsmit J. 1995. Phylogeny of African monkeys based upon mitochondrial 12S rRNA sequences. J. Mol. Evol., 40: 173-180. https://doi.org/10.1007/BF00167111

Wilkinson S., Wiener P., Teverson D., Haley C.S., Hocking P.M. 2011. Characterization of the genetic diversity, structure and admixture of British chicken breeds. Anim. Genet., 43: 552-563. https://doi.org/10.1111/j.1365-2052.2011.02296.x

Yang L., Tan Z., Wang D., Xue L., Guan M., Huang T., Li R. 2014. Species identification through mitochondrial rRNA genetic analysis. Sci. Rep., 4: 4089. https://doi.org/10.1038/srep04089

Show more Show less