Effect of genotype on estimated indexes of fatty acid metabolism in rabbits


  • Alessandro Dal Bosco University of Perugia
  • Cecilia Mugnai University of Teramo
  • Valentina Roscini University of Perugia
  • Gisella Paci University of Pisa
  • Cesare Castellini University of Perugia




rabbit, genotype, fatty acid, lipid metabolism


To analyse the effect of rabbit genotype on fatty acid metabolism, 60 weaned rabbits (30 d old, sex ratio 1:1; 20 New Zealand White, 20 Leprino of Viterbo and 20 rabbits of a Local grey population) were reared in bicellular standard cages. At 80 d, 10 rabbits per group were selected and slaughtered. The muscle fatty acid composition and relative indexes of metabolism of the longissmus lumborum of these rabbits were determined. The New Zealand White and Leprino rabbits exhibited lower percentages of myristic acid and higher percentages of palmitic acid and palmitoleic acid, and the levels of monounsaturated fatty acids were significantly higher in these rabbits. The grey-coloured rabbits exhibited the highest values of total n-3 fatty acids. With respect to fatty acid metabolism, the New Zealand White and Leprino rabbits exhibited higher thioesterase and Δ9-desaturase indexes and lower elongase and Δ5- Δ6-desaturase indexes. The estimated Δ5- Δ6-desaturase activity was significantly higher in the Local grey rabbits, suggesting a genetic effect on the desaturase and elongase mechanisms responsible for the synthesis of long-chain n-3 fatty acids.


Download data is not yet available.


Alessandri J.M., Extier A., Al-Gubory K.H., Harbeby E., Lallemand M., Linard A., Lavialle M., Guesnet P. 2011. Influence of gender on DHA synthesis: the response of rat liver to low dietary α-linolenic acid evidences higher ω3 Δ4 desaturation index in females. Eur. J. Nutr., 51: 199-209. doi:10.1007/s00394-011-0208-1

AOAC. 2000. Official Methods of Analysis, 17th ed. Association of Official Analytical Chemists, Arlington, VA, USA.

Aktas H., Halperin J.A. 2004. Translational regulation of gene expression by ω-3 fatty acids. J. Nutr., 134: 2487S-2491S.

Barcelo-Coblijn G., Murphy E.J. 2009. Alpha-linolenic acid and its conversion to longer chain n-3 acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Progr. Lipid Res., 48: 355-374. doi:10.1016/j.plipres.2009.07.002

Blasco A., Ouhayoun J. 1996. Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci., 4: 93-98. doi:10.4995/wrs.1996.278

Cameron N.D. 1990. Genetic and phenotypic parameters for fatty acid composition of subcutaneous fat, meat quality, carcass composition and eating quality traits in pigs. In Proc.: 4th WCGALP, 10-14 September, 1990, Edinburgh, Scotland, UK, XV: 549-552.

Cameron P.J., Rogers M., Oman J., May S.G., Lunt D.K., Smith S.B. 1994. Stearoyl coenzyme A desaturase enzyme activity and mRNA levels are not different in subcutaneous adipose from Angus and American Wagyu steers. J. Anim. Sci., 72: 2624-2628.

Costa Castro F.L., Monroig O., Leaver M.L., Wilson J., Cunha I., Tocher D.R. 2012. Functional Desaturase Fads1 (D5) and Fads2 (D6) orthologues evolved before the origin of jawed Vertebrates. PLoS ONE, 7: 1-9.

D’Agata M., Preziuso G., Russo C., Dalle Zotte A., Mourvaki E., Paci G. 2009. Effect of an outdoor rearing system on the welfare, growth performance, carcass and meat quality of a slow-growing rabbit population. Meat Sci., 83: 691-696. doi:10.1016/j.meatsci.2009.08.005

Dal Bosco A., Castellini C., Bianchi L., Mugnai C. 2004. Effect of dietary α-linolenic acid and vitamin E on the fatty acid composition, storage stability and sensory traits of rabbit meat. Meat Sci., 66: 407-413. doi:10.1016/S0309-1740(03)00127-X

Dal Bosco A., Mugnai C., Mourvaki E., Castellini C. 2007. Effet de la disponibilité du pâturage sur le state oxydatif et sur le profil d'acides grasses de la viande de lapin. In Proc.: 12émes Journées Recherche Cunicole, 27-29 November 2011, Le Mans, France.

Dal Bosco A., Mugnai C., Ruggeri S., Mattioli S., Castellini C. 2012. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poultry Sci., 91: 2039-2045. doi:10.3382/ps.2012-02228

De Smet S., Raes K., Demeyer D. 2004. Meat fatty acid composition as affected by fatness and genetic factors: a review. Anim. Res., 53: 81-98. doi:10.1051/animres:2004003

Folch J., Lees M., Sloane-Stanley H. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226: 497-509.

Gašperlin L., Polak T., Rajar A., Skvarèa M., Zlender B. 2006. Effect of genotype, age at slaughter and sex on chemical composition and sensory profile of rabbit meat. World Rabbit Sci., 14: 157-166. doi:10.4995/wrs.2006.558

Gazzetta Ufficiale. 1992. Attuazione della Direttiva 86/609/ CEE in materia di protezione degli animali utilizzati ai fini sperimentali o ad altri fini scientifici, D.L. January 27, 1992, n. 116. In: Supplemento ordinario alla Gazzetta Ufficiale, n. 40, 18/2/1992, 1-12.

García P.T. 2011. Metabolism of α-linolenic acid (ALA) in meat animals, soybean and nutrition. Prof. Hany El-Shemy (Ed.), ISBN: 978-953-307-536-5, InTech, Available from: http://www.intechopen.com/books/soybean-and-nutrition/ metabolism-of-linolenic-acid-ala-in-meat-animals. Accessed: February 2013.

Jeffcoat R. 1979. The biosynthesis of unsaturated fatty acid and its control in mammalian liver. Biochem., 15: 1-36.

Laborde F.L., Mandell I.B., Tosh J.J., Wilton J.W., Buchanan Smith J.G. 2001. Breed effects on growth performance, carcass characteristics, fatty acid composition, and palatability attributes in finishing steers. J. Anim. Sci., 79: 355-365.

Lambertini L., Vignola G., Paci G., Morittu V.M., Zaghini G. 2006. Produttività e adattabilità all’allevamento in colonia di una razza/popolazione cunicola a lento accrescimento. Riv. Conigl. 4: 26-32.

Lands W.E.M. 1992. Biochemistry and physiology of n-3 fatty acids. FASEB J., 6: 2530-2536.

Malau-Aduli A.E., Siebert B.D., Bottema C.D., Pitchford W.S. 1998. Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. J. Anim. Sci.,76: 766-773.

Maertens L., Moermans R., De Groote G. 1984. Prediction of apparent digestible energy content of commercial pelletted feeds for rabbits. J. Appl. Rabbit Res., 11: 60-67.

Mertens D.R., 2002. Gravimetric determination of amylase treated neutral detergent fibre in feeds with refluxing beakers or crucibles: collaborative study. J. AOAC Int., 85: 1217-1240.

Mugnai C., Finzi A., Zamparini C., Dal Bosco A., Castellini C. 2008. Pasture availability and genotype effects in rabbit: 3. Meat quality. In: Proc. 9th World Rabbit Congress, 10-13 June, 2008, Verona, Italy, 1405-1410.

Okada T., Furuhashi N., Kuromori Y., Miyashita M., Iwata F., Harada K. 2005. Plasma palmitoleic acid content and obesity in children. Am. J. Clin. Nutr., 82: 747-750.

Paci G., Schiavone A., Lisi E., Peiretti P. G., Bagliacca M., Mussa P.P. 2005. Meat quality characteristics in local population of rabbit reared with organic system. Ital. J. Anim. Sci., 4: 562-569.

Pla M., Guerrero L., Guardia D., Oliver M.A., Blasco A. 1998. Carcass characteristics and meat quality of rabbit lines selected for different objectives: I. Between lines comparison. Livest. Prod. Sci., 54: 115-123. doi:10.1016/S0301-6226(97)00179-6

Polak T., Gašperlin L., Rajar A., Zlender B. 2006. Influence of genotype lines, age at slaughter and sexes on the composition of rabbit meat. Food Technol. Biotech., 44: 65-73.

Sirri F., Castellini C., Roncarati A., Franchini A., Meluzzi A. 2010. Effect of feeding and genotype on the lipid profile of organic chicken meat. Eur. J. Lipid Sci. Tech., 112: 994-1002. doi:10.1002/ejlt.200900204

Sprecher H. 2000. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta, 1486: 219-231. doi:10.1016/S1388-1981(00)00077-9

StataCorp. 2005. Stata Statistical Software: Release 9.0, College Station, Texas, USA.

Sturdivant C.A., Lunt D.K., Smith G.C., Smith S.B. 1992. Fatty acid composition of subcutaneous and intramuscular adipose tissues and M. longissimus dorsi of Wagyu cattle. Meat Sci., 32: 449-458. doi:10.1016/0309-1740(92)90086-J

Van Soest P.J., Robertson J.B., Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597. doi:10.3168/jds.S0022-0302(91)78551-2

Vessby B., Gustafsson I.B., Tengblad S., Boberg M., Andersson A. 2002. Desaturation and elongation of fatty acids and insulin action. Ann. NY Acad. Sci., 67: 183-195.

Welch A.A, Lund E., Amiano P., Dorronsoro M., Brustad M., Kumle M., Rodriguez M., Lasheras C., Janzon L., Jansson J., Luben R., Spencer E.A., Overvad K., Tjønneland A., Clavel Chapelon F., Linseisen J., Klipstein-Grobusch K., Benetou V., Zavitsanos X., Tumino R., Galasso R., Bueno-de-Mesquita H.B., Ocké M.C., Charrondière U.R., Slimani N. 2002. Variability of fish consumption within the 10 European countries participating in the European Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr., 5: 1273-1285. doi:10.1079/PHN2002404

Wood J.D., Enser M. 1997. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. British J. Nutr., 78: S49-S60. doi:10.1079/BJN19970134

Wood J.D., Enser M., Fisher A.V., Nute G.R., Sheard P.R., Richardson R.I., Hughes S.I., Whittington F.M. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci., 78: 343-358. doi:10.1016/j.meatsci.2007.07.019

Yamazaki K., Fujikawa M., Hamazaki T., Yano S., Shono T. 1992. Comparison of the conversion rates of α-linolenic acid (18-3(n-3)) and stearidonic acid (18-4(n-3)) to longer polyunsaturated fatty acids in rats. Biochim. Biophys. Acta, 1123: 18-26. doi:10.1016/0005-2760(92)90166-S

Zhang S., Knight T.J., Stalder K.J., Goodwin R.N., Lonergan S.M., Beitz D.C. 2007. Effects of breed, sex, and halothane genotype on fatty acid composition of pork longissimus muscle. J. Anim. Sci., 85: 583-591. doi:10.2527/jas.2006-239

Kitajka K., Puskas L.G., Zvara A., Hackler L., Barcelo-Coblijn G., Yeo Y.K. 2002. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n 3 fatty acids. P. Natl. Acad. Sci. USA, 5: 2619-2624. doi:10.1073/pnas.042698699