Detection of polymorphisms and protein domain architectures in rabbit toll-like receptor 2


  • Zhang X. Y. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Lei M. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Xie L. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Zhang C. X. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Zheng J. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Yang C. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Deng X. D. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Li J. L. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Huang D. P. Research Institute of Rabbits, Sichuan Animal Science Academy
  • Xie X. H. Research Institute of Rabbits, Sichuan Animal Science Academy



toll-like receptors, single nucleotide polymorphism (SNP), innate immunity, rabbits


Toll-like receptors (TLRs) recognise pathogen-associated molecular patterns (PAMPs) derived from pathogens and participate in activation of the immune responses. The TLR2 gene can recognise PAMPs specific to bacterial diseases such as pneumonia. In the present study, we sequenced the coding regions of the TLR2 gene in 18 rabbits from 5 breeds, including New Zealand White, Californian, Flemish Giant, Chinchilla and Fu Jian Yellow. In total, we discovered 11 single nucleotide polymorphisms (SNPs), including 4 non-synonymous SNPs located within the predicted TLR domains. Two non-synonymous SNPs (G205A and G265C) were located in the LRR (leucine-rich repeat) domains of the predicted protein, while another non-synonymous SNP (C943T) was situated in the regions involved in binding to ligands. In addition, one synonymous SNP (C1174T) was distributed in the nucleus regions of heterodimers formed. Then, we revealed five conservative regions in the LRR patterning by prediction and comparison of TLR2 protein domain architectures for multiple species. The SNPs in the TLR2 gene may increase the probability of adaptation to variability of PAMPs due to the rapid evolution of pathogens and the possibility of survival in rabbit populations. The SNPs reported here will be useful to investigate the association between the TLR2 gene and disease resistance in future studies.


Download data is not yet available.


Abreu M.T. 2010. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol., 10: 131-144. doi:10.1038/nri2707

Abu-Amero K.K., Jaeger M., Plantinga T., Netea M.G., Hassan H.Y. 2013. Genetic variation of TLR2 and TLR4 among the Saudi Arabian population: insight into the evolutionary dynamics of the Arabian Peninsula. Genet. Test. Mol. Bioma., 17:166-169. doi:10.1089/gtmb.2012.0281

Akira S., Takeda K. 2004. Toll-like receptor signaling. Nat. Rev. Immunol., 4: 499-511. doi:10.1038/nri1391

Bochud P.Y., Hersberger M., Taffé P., Bochud M., Stein C.M., Rodrigues S.D., Calandra T., Francioli P., Telenti A., Speck R.F., Aderem A. 2007. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS, 21: 441 446. doi:10.1097/QAD.0b013e328012b8ac

Botos I., Segal D.M., Davies D.R. 2011. The structural biology of Toll-like receptors. Structure, 19: 447-459. doi:10.1016/j.str.2011.02.004

Brest P., Lapaquette P., Souidi M., Lebrigand K., Cesaro A., Vouret-Craviari V., Mari B., Barbry P., Mosnier J.F., Hébuterne X., Harel-Bellan A., Mograbi B., Darfeuille-Michaud A., Hofman P. 2011. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet., 43: 242-245. doi:10.1038/ng.762

Carrington M., Nelson G.W., Martin M.P., Kissner T., Vlahov D., Goedert J.J., Kaslow R., Buchbinder S., Hoots K., O’Brien S.J. 1999. HLA and HIV-1: heterozygote advantage and B*35 Cw*04 disadvantage. Science, 283: 1748-1752. doi:10.1126/science.283.5408.1748

Fujita M., Into T., Yasuda M., Okusawa T., Hamahira S., Kuroki Y., Eto A., Nisizawa T., Morita M., Shibata K. 2003. Involvement of leucine residues at positions 107, 112, and 115 in a leucinerich repeat motif of human Toll-like receptor 2 in the recognition of diacylated lipoproteins and lipopeptides and Staphylococcus aureus peptidoglycans. J. Immunol., 171: 3675-3683.

Greene J.A., Sam-Agudu N., John C.C., Opoka R.O., Zimmerman P.A., Kazura J.W. 2012. Toll-like receptor polymorphisms and cerebral malaria: TLR2 Δ22 polymorphism is associated with protection from cerebral malaria in a case control study. Malaria J., 47-57.

He J.F., Jia W.H., Fan Q., Zhou X.X., Qin H.D., Shugart Y.Y., Zeng Y.X. 2007. Genetic polymorphisms of TLR3 are associated with Nasopharyngeal carcinoma risk in Cantonese population. BMC Cancer, 7: 194-200. doi:10.1186/1471-2407-7-194

Janeway C.A., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol., 20: 197-216. doi:10.1146/annurev.immunol.20.083001.084359

Jin M.S., Kim S.E., Heo J.Y., Lee M.E., Kim H.M., Paik S.G., Lee H., Lee, J.O. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130: 1071-1082. doi:10.1016/j.cell.2007.09.008

Kajikawa O., Frevert C.W., Lin S.M., Goodman R.B., Mongovin S.M., Wong V., Ballman K., Daubeuf B., Elson G., Martin T.R. 2005. Gene expression of Toll-like receptor-2, Toll-like receptor-4, and MD2 is differentially regulated in rabbits with Escherichia coli pneumonia. Gene, 344: 193-202. doi:10.1016/j.gene.2004.09.032

Kang J.Y., Nan X., Jin M.S., Youn S.J., Ryu Y.H., Mah S., Han S.H., Lee H., Paik S.G., Lee J.O. 2009. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity, 31: 873-884. doi:10.1016/j.immuni.2009.09.018

Karaca N., Ozturk G., Gerceker B.T., Turkmen M., Berdeli A. 2013. TLR2 and TLR4 gene polymorphisms in Turkish vitiligo patients. J. Eur. Acad. Dermatol., 27: 85-90. doi:10.1111/j.1468-3083.2012.04514.x

Kruithof E.K., Satta N., Liu J.W., Dunoyer-Geindre S., Fish R.J. 2007. Gene conversion limits divergence of mammalian TLR1 and TLR6. BMC Evol. Biol., 7: 148-158. doi:10.1186/1471-2148-7-148

Krutzik S.R., Ochoa M.T., Sieling P.A., Uematsu S., Ng Y.W., Legaspi A., Liu P.T., Cole S.T., Godowski P.J., Maeda Y., Sarno E.N., Norgard M.V., Brennan P.J., Akira S., Rea T.H., Modlin R.L. 2003. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat. Med., 9: 525-532. doi:10.1038/nm864

Letunic I., Copley R.R., Pils B., Pinkert S., Schultz J., Bork P. 2006. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res., 34: 257-260. doi:.1093/nar/gkj079

Letunic I., Doerks T., Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res., 40:302-305. doi:10.1093/nar/gkr931

Nicholas F.W. 2005. Animal breeding and disease. Philos. T. Roy. Soc. B, 360: 1529-1536. doi:10.1098/rstb.2005.1674

Potaczek D.P., Nastalek M., Okumura K., Wojas-Pelc A., Undas A., Nishiyama C. 2011. An association of TLR2-16934A>T polymorphism and severity/phenotype of atopic dermatitis. J. Eur. Acad. Dermatol., 25: 715-721. doi:10.1111/j.1468-3083.2010.03812.x

Ray A., Cot M., Puzo G., Gilleron M., Nigou J. 2013. Bacterial cell wall macroamphiphiles: Pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie, 95: 33-42 doi:10.1016/j.biochi.2012.06.007

Sauna Z.E., Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet., 12: 683-691. doi:10.1038/nrg3051

Seabury C.M., Cargill E.J., Womack J.E. 2007. Sequence variability and protein domain architectures for bovine Toll-like receptors 1, 5, and 10. Genomics, 90: 502-515. doi:10.1016/j.ygeno.2007.07.001

Seabury C.M, Womack J.E. 2008. Analysis of sequence variability and protein domain architectures for bovine peptidoglycan recognition protein 1 and Toll-like receptors 2 and 6. Genomics, 92: 235-245. doi:10.1016/j.ygeno.2008.06.005

Shinkai H., Tanaka M., Morozumi T., Eguchi-Ogawa T., Okumura N., Muneta Y., Awata T., Uenishi H. 2006 Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Tolllike receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics, 58: 324-30. doi:10.1007/s00251-005-0068-z

Tabel Y., Berdeli A., Mir S. 2007. Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int. J. Immunogenet., 34: 339-405. doi:10.1111/j.1744-313X.2007.00709.x

Takeda K., Akira S. 2005. Toll-like receptors in innate immunity. Int. Immunol., 17: 1-14. doi:10.1093/intimm/dxh186

Takeuchi O., Kawai T., Mühlradt P.F., Morr M., Radolf J.D., Zychlinsky A., Takeda K., Akira S. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol., 13: 933-940. doi:10.1093/intimm/13.7.933

Tapping R.I., Omueti K.O., Johnson C.M. 2007. Genetic polymorphisms within the human Toll-like receptor 2 subfamily. Biochem. Soc. T., 35: 1445-1448. doi:10.1042/BST0351445

Tschirren B., Andersson M., Scherman K., Westerdahl H., Mittl P.R., Råberg L. 2013. Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population. Proc. Biol. Sci., 280: 1759. doi: 10.1098/rspb.2013.0364

Uenishi H., Shinkai H. 2009. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol., 33: 353-61. doi:10.1016/j.dci.2008.06.001

Vasselon T., Detmers P.A. 2002. Toll receptors: a central element in innate immune responses. Infect. Immun., 70: 1033-1041. doi:10.1128/IAI.70.3.1033-1041.2002

Vignozzi L., Morelli A., Sarchielli E., Comeglio P., Filippi S., Cellai I., Maneschi E., Serni S., Gacci M., Carini M., Piccinni M.P., Saad F., Adorini L., Vannelli G.B., Maggi M. 2012. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J. Endocrinol., 212: 71-84. doi:10.1530/JOE-11-0289

West A.P., Koblansky A.A., Ghosh S. 2006. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol., 22: 409-437. doi:10.1146/annurev.cellbio.21.122303.115827

White S.N., Taylor K.H., Abbey C.A., Gill C.A., Womack J.E. 2003. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligandbinding domain. Proc. Natl. Acad. Sci., 100: 10364-10369. doi:10.1073/pnas.1333957100