Characterization of Staphylococcus aureus ST3320 clone causing fatal respiratory infection in rabbits

Authors

  • Jinxiang Wang Fujian Academy of Agricultural Sciences https://orcid.org/0000-0001-8911-3068
  • S. Sun Fujian Academy of Agricultural Sciences
  • Y. Chen Fujian Academy of Agricultural Sciences
  • D. Chen Fujian Academy of Agricultural Sciences
  • L. Sang Fujian Academy of Agricultural Sciences
  • X. Xie Fujian Academy of Agricultural Sciences

DOI:

https://doi.org/10.4995/wrs.2021.14280

Keywords:

Staphylococcus aureus, rabbit, fatal respiratory infection, virulence gene, multi-locus sequencing typing

Abstract

Staphylococcus aureus is a well-known pathogen that infects humans and animals. However, information on the fatal respiratory infection in rabbits caused by S. aureus is still limited. In the present study, a S. aureus isolate designated ND01 was recovered from lung samples of rabbits that died of fatal respiratory infection, and the ND01 was characterised by intranasal infection of rabbits, multi-locus sequencing typing, screening virulence genes and testing antimicrobial susceptibility. Clinical signs of matted forepaws and pathological lesions of haemorrhagic tracheitis and necrotising haemorrhagic pneumonia were observed in the ND01 infected rabbits, which were identical to those of naturally infected ones. The sequence type of the ND01 was defined as ST3320 and the ND01 was further grouped into the clonal complex 398. Notably, the ND01 was pvl-positive S. aureus and carried the human-associated scn gene. Moreover, the ND01 was methicillin-susceptible S. aureus and was susceptible to 6 of 10 tested antibiotics. This study described the characteristics of the ND01 causing fatal respiratory infection in rabbits. The results are helpful to further the understanding of the pathogenicity of S. aureus ST3320 clone in rabbits. The results also highlighted that operators must be on the alert for the colonisation of pvl-positive S. aureus in rabbits and potential transmission events between rabbits and humans.

Downloads

Download data is not yet available.

Author Biographies

Jinxiang Wang, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Medicine

S. Sun, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Medicine

Y. Chen, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Medicine

D. Chen, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Medicine

L. Sang, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Medicine

X. Xie, Fujian Academy of Agricultural Sciences

Institute of Animal Husbandry and Veterinary Medicine

References

Agnoletti F., Mazzolini E., Bacchin C., Bano L., Berto G., Rigoli R., Muffato G., Goato P., Tonon E., Drigo I. 2014. First reporting of methicillin-resistant Staphylococcus aureus (MRSA) ST398 in an industrial rabbit holding and in farm-related people. Vet. Microbiol., 170: 172-177. https://doi.org/10.1016/j.vetmic.2014.01.035

Algammal A.M., Hetta H.F., Elkelish A., Alkhalifah D.H.H., Hozzein W.H., Batiha G.E., EI Nahhas N., Mabrok M.A. 2020. Methicillin-resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistant, and zoonotic impact. Infect. Drug Resist., 13: 3255-3265. https://doi.org/10.2147/IDR.S272733

Brakstad O.G., Aasbakk K., Maeland J.A. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol., 30: 1654-1660. https://doi.org/10.1128/JCM.30.7.1654-1660.1992

Chroboczek T., Boisset S., Rasigade J., Tristan A., Bes M., Meugnier H., Vandenesch F., Etienne J., Laurent F. 2013. Clonal complex 398 methicillin susceptible Staphylococcus aureus: a frequent unspecialized human pathogen with specific phenotypic and genotypic characteristics. PLoS One, 8: e68462. https://doi.org/10.1371/journal.pone.0068462

CLSI (Clinical and Laboratory Standards Institute). 2018. Performance standards for antimicrobial susceptibility testing, 28th edition, CLSI supplement M100. Wayne, PA, USA.

Corpa J.M., Hermans K., Haesebrouck F. 2009. Main pathologies associated with Staphylococcus aureus infections in rabbits: a review. World Rabbit Sci., 17: 115-125. https://doi.org/10.4995/wrs.2009.651

Davies P.R., Wagstrom E.A., Bender J.B. 2011. Lethal necrotizing pneumonia caused by an ST398 Staphylococcus aureus strain. Emerg. Infect. Dis., 17: 1152-1153. https://doi.org/10.3201/eid1706.101394

Ferreira A., Monteiro J.M., Vieira-pinto M. 2014. The importance of subcutaneous abscess infection by Pasteurella spp. and Staphylococcus aureus as a cause of meat condemnation in slaughtered commercial rabbits. World Rabbit Sci., 22: 311-317. https://doi.org/10.4995/wrs.2014.2238

Gillet Y., Issartel B., Vanhems P., Fournet J., Lina G., Bes M., Vandenesch F., Piémont Y., Brousse N., Floret D., Etienne J. 2002. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet, 359: 753-759. https://doi.org/10.1016/S0140-6736(02)07877-7

Giulieri S.G., Tong S.Y.C., Williamson D.A. 2020. Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections. Microb. Genom., 6: e000324. https://doi.org/10.1099/mgen.0.000324

Huang J., Zhang T., Zou X., Wu S., Zhu J. 2020. Panton-Valentine leukocidin carrying Staphylococcus aureus causing necrotizing pneumonia inactivates the JAK/STAT signaling pathway and increases the expression of inflammatory cytokines. Infect. Genet. Evol., 86: 104582. https://doi.org/10.1016/j.meegid.2020.104582

Jarraud S., Mougel C., Thioulouse J., Lina G., Meugnier H., Forey F., Nesme X., Etienne J., Vandenesch F. 2002. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun., 70: 631-641. https://doi.org/10.1128/IAI.70.2.631-641.2002

Jenul C., Horswill A.R. 2019. Regulation of Staphylococcus aureus virulence. Microbiol. Spectr., 7: GPP3-0031-2018. https://doi.org/10.1128/microbiolspec.GPP3-0031-2018

Liu Y., Li W., Dong Q., Liu Y., Ye X. 2021. Livestock-associated and non-livestock-associated Staphylococcus aureus carriage in humans is associated with pig exposure in a dose-response manner. Infect. Drug Resist., 14: 173-184. https://doi.org/10.2147/IDR.S290655

Lozano C., Gharsa H., Slama K.B., Zarazaga M., Torres C. 2016. Staphylococcus aureus in animals and food: methicillin resistance, prevalence and population structure. A review in the African continent. Microorganisms, 4: 12. https://doi.org/10.3390/microorganisms4010012

Mongodin E., Bajolet O., Cutrona J., Bonnet N., Dupuit F., Puchelle E., de Bentzmann S. 2002. Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect. Immun., 70: 620-630. https://doi.org/10.1128/iai.70.2.620-630.2002

Moreno-Grúa E., Pérez-Fuentes S., Muñoz-Silvestre A., Viana D., Fernández-Ros A.B., Celia Sanz-Tejero C., Corpa J.M., Selva L. 2018. Characterization of livestockassociated methicillin-resistant Staphylococcus aureus isolates obtained from commercial rabbitries located in the Iberian Peninsula. Front. Microbiol., 9: 1812. https://doi.org/10.3389/fmicb.2018.01812

Murakami K., Minamide W., Wada K., Nakamura E., Teraoka H., Watanabe S. 1991. Identification of methicillinresistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol., 29: 2240-2244. https://doi.org/10.1128/jcm.29.10.2240-2244.1991

Paterson G.K., Larsen A.R., Robb A., Edwards G.E., Pennycott T.W., Foster G., Mot D., Hermans K., Baert K., Peacock S.J., Parkhill J., Zadoks R.N., Holmes M.A. 2012. The newly described mecA homologue, mecALGA251, is present in methicillinresistant Staphylococcus aureus isolates from a diverse range of host species. J. Antimicrob. Chemother., 67: 2809-2813. https://doi.org/10.1093/jac/dks329

Rowe S.E., Wagner N.J., Li L., Beam J.E., Wilkinson A.D., Radlinski L.C., Zhang Q., Miao E.A., Conlon B.P. 2020. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat. Microbiol., 5: 282-290. https://doi.org/10.1038/s41564-019-0627-y

Selva L., Viana D., Corpa J.M. 2015. Staphylococcus aureus nasal carriage could be a risk for development of clinical infections in rabbits. World Rabbit Sci., 23: 181-184. https://doi.org/10.4995/wrs.2015.3960

Sicot N., Khanafer N., Meyssonnier V., Dumitrescu O., Tristan A., Bes M., Lina G., Vandenesch F., Vanhems P., Etienne J., Gillet Y. 2013. Methicillin resistance is not a predictor of severity in community acquired Staphylococcus aureus necrotizing pneumonia-results of a prospective observational study. Clin. Microbiol. Infect., 19: E142-148. https://doi.org/10.1111/1469-0691.12022

Silva V., de Sousa T., Gómez P., Sabença C., Vieira-Pinto M., Capita R., Alonso-Calleja C., Torres C., Capelo J.L., Igrejas G., Poeta P. 2020. Livestock-associated methicillinresistant Staphylococcus aureus (MRSA) in purulent subcutaneous lesions of farm rabbits. Foods, 9: 439. https://doi.org/10.3390/foods9040439

Speziale P., Pietrocola G. 2020. The multivalent role of fibronectin-binding proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in host infections. Front. Microbiol., 11: 2054. https://doi.org/10.3389/fmicb.2020.02054

Srinivasan V., Sawant A.A., Gillespie B.E., Headrick S.J., Ceasaris L., Oliver S.P. 2006. Prevalence of enterotoxin and toxic shock syndrome toxin genes in Staphylococcus aureus isolated from milk of cows with mastitis. Foodborne Pathog. Dis., 3: 274-283. https://doi.org/10.1089/fpd.2006.3.274

Stegger M., Liu C.M., Larsen J., Soldanova K., Aziz M., Contente-Cuomo T., Petersen A., Vandendriessche S., Jiménez J.N., Mammina C., van Belkum A., Salmenlinna S., Laurent F., Skov R.L., Larsen A.R., Andersen P.S., Price L.B. 2013. Rapid differentiation between livestock-associated and livestockindependent Staphylococcus aureus CC398 clades. PLoS One, 8: e79645. https://doi.org/10.1371/journal.pone.0079645

van Wamel W.J.B., Rooijakkers S.H.M., Ruyken M., van Kessel K.P.M., van Strijp J.A.G. 2006. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol., 188: 1310-1315. https://doi.org/10.1128/JB.188.4.1310-1315.2006

Viana D., Selva L., Penadés M., Corpa J.M. 2015. Screening of virulence genes in Staphylococcus aureus isolates from rabbits. World Rabbit Sci., 23: 185-195. https://doi.org/10.4995/wrs.2015.3961

Wang J., Sang L., Sun S., Chen Y., Chen D., Xie X. 2019a. Characterisation of Staphylococcus aureus isolated from rabbits in Fujian, China. Epidemiology and Infection, e256: 1-5. https://doi.org/10.1017/S0950268819001468

Wang J., Sang L., Chen Y., Sun S., Chen D., Xie X. 2019b. Characterisation of Staphylococcus aureus strain causing severe respiratory disease in rabbits. World Rabbit Sci., 27: 41-48. https://doi.org/10.4995/wrs.2019.10454

Warsa U.C., Nonoyama M. Ida T., Okamoto R., Okubo T., Shimauchi C., Kuga A., Inoue M. 1996. Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. J. Antibiot. (Tokyo), 49: 1127-1132. https://doi.org/10.7164/antibiotics.49.1127

Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

Xie Y., He Y., Gehring A, Hu Y, Li Q., Tu SI., Shi X. 2011. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS One, 6: e28276. https://doi.org/10.1371/journal.pone.0028276

Downloads

Published

2021-06-30

Issue

Section

Pathology