The influence of porcine cathelicidins on neutrophils isolated from rabbits in the course of bone graft implantation

Authors

  • J. Wessely-Szponder Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Poland
  • T. Szponder Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
  • R. Bobowiec Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine. University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
  • A. Smolira Institute of Physics, Division of Molecular Physics, Maria Curie Sklodowska University, Lublin, Poland.

DOI:

https://doi.org/10.4995/wrs.2013.1350

Keywords:

cathelicidin, neutrophil, rabbit

Abstract

Antimicrobial peptides are important elements of host defence because of their direct antimicrobial activity and modulatory role in innate immune response. The purpose of the study was to determine whether porcine peptides PR-39, protegrins (PGs) and low molecular weight extract (LMWE) are able to influence the neutrophil response during bone graft implantation in rabbits. The study was conducted on 10 White New Zealand rabbits and neutrophil activity was assayed on the basis of elastase, myeloperoxidase, and alkaline phosphatase release as well as free radical generation. Our study showed that PR-39 and PGs inhibited enzyme release from neutrophils except for elastase, which is essential in the first phase of injury. Superoxide and nitric oxide generation under the influence of PR-39 and PGs were also decreased. Moreover, we found that unlike separated peptides PR-39 and PGs, LMWE acts proinflammatorily, intensifying the neutrophil secretory response and free radical generation. These results should be taken into account in treatment with natural antimicrobial peptides. The increased neutrophil responses in the first phase of inflammation during surgery may be useful in prevention of infection, but LMWE should not be used in conditions in which excessive neutrophil response is injurious.

Downloads

Download data is not yet available.

References

Anderson R.C., Wilkinson B., Yu P.-L. 2004. Ovine antimicrobial peptides: new products from an age-old industry. Austr. J. Agric. Res.,55: 69-75. doi:10.1071/AR03064

Anderson R.C., Yu P.-L. 2003. Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochem. Bioph. Res. Co., 312: 1139-1146. doi:10.1016/j.bbrc.2003.11.045

Anderson R.C, Yu P.-L. 2008. Pilot-scale extraction and

antimicrobial activity of crude extract from ovine neutrophils. Process Biochem., 43: 882-886. doi:10.1016/j.procbio.2008.04.005

Bao J., Sato K., Gao Y., Abid R., Arid W., Simons M., Post M. 2001. PR-39 and PR-11 peptides inhibit ischemia-reperfusion injury by blocking proteasome-mediated IκBα degradation. Am. J. Physiol-Heart C., 28: 2612-2618.

Bowdish D.M.E., Davidson D.J., Scott M.G., Hancock R.E.W. 2005. Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Ch., 49: 1727-1732. doi:10.1128/AAC.49.5.1727-1732.2005

Brown K.L., Hancock R.E.W. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol., 18: 24-30. doi:10.1016/j.coi.2005.11.004

Ceccarelli A.V., Cole A.M., Park A.K., Tahk S., Yoshioka D., Ganz T. 2001.Therapeutic effect of a pig-derived peptide antibiotic on porcine wound infections. Comparative Medicine, 51: 75-79.

Cole A.M., Shi J., Ceccarelli A., Kim Y.-H., Park A., Ganz T. 2001. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood, 97: 297-304. doi:10.1182/blood.V97.1.297

Franz S., Rammelt S., Scharnweber D., Simon J.C. 2011. Immune responses to implants - A review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 32: 6692-6709. doi:10.1016/j.biomaterials.2011.05.078

Gruszecka A., Szymańska-Chargot M., Smolira A., Cytawa J., Michalak L. 2008. Role of the support material on laser desorption/ionization mass spectra. Rapid. Commun. Mass Sp., 22: 925-929. doi:10.1002/rcm.3425

Herting E., Jarstrand C., Rasool O., Cursted T., Sun B., Robertson B. 1994. Experimental neonatal group B streptococcal pneumonia: effect of a modified porcine surfactant on bacterial proliferation in ventilated near-term rabbits. Pediatr. Res., 36: 784-791.

doi:10.1203/00006450-199412000-00017

Hoffmeyer M., Scalia R., Ross Ch., Jones S., Lefer D. 2000. PR-39, a potent neutrophil inhibitor, attenuates myocardial ischemiareperfusion injury in mice. Am. J. Physiol-Heart C., 279: 2824-2828.

Huang H.-J., Ross C.R., Blecha F. 1997. Chemoattractant properties of PR-39, a neutrophil antibacterial peptide. J. Leukocyte Biol., 61: 624-629.

Ikeda Y., Young L.H., Scalia R., Ross C.R., Lefer A.M. 2001. PR-39, a proline/arginine-rich antimicrobial peptide, exerts cardioprotective effects in myocardial ischemia-reperfusion. Cardiovasc. Res., 49: 69-77. doi:10.1016/S0008-6363(00)00226-1

Karas M., Bachmann D., Bahr U., Hillenkamp F. 1987. Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. Int. J. Mass Spectrom. Ion Processes, 78: 53-68.

doi:10.1016/0168-1176(87)87041-6

Kaveh K., Ibrahim R., Bakar M.Z.A., Ibrahim T.A. 2010. Bone grafting and bone graft substitutes. J. Anim. Vet. Adv., 9: 1055-1067. doi:10.3923/javaa.2010.1055.1067

Kokryakov V.N., Harwig S.S.L., Panyutich E.A., Shevchenkoc A.A., Aleshinab G.M., Shamovab O.V., Kornevab H.A., Lehrer R.I. 1993. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS, 372: 231-236. doi:10.1016/0014-5793(93)80175-T

Korthuis R.J., Gute D.C., Blecha F., Ross C.R. 1999. PR-39 a proline/arginine-rich antimicrobial peptide, prevents postischemic microvascular dysfunction. Am. J. Physiol-Heart C., 277: 1007-1013.

Levy O. 2000. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood, 96: 2664-2672.

Li Y. 2009. The role of antimicrobial peptides in cardiovascular physiology and disease. Biochem. Bioph. Res. Co., 390: 363-367. doi:10.1016/j.bbrc.2009.10.002

Loury D.J., Embree J.R., Steinberg D.A., Sonis S.T., Fiddes J.C. 1999. Effect of local application of the antimicrobial peptide IB-367 on the incidence and severity of mucositis in hamsters. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 87: 544-551. doi:10.1016/S1079-2104(99)70131-9

Ramstedt S., Palmquist A., Johansson A., Breding K., Engqvist H, Thomsen P. 2010. Inflammatory response to injectable biomaterials for stabilization of vertebral compression fractures. Trends Biomater. Artif. Organs., 24: 1-10.

Sang Y., Blecha F. 2009. Porcine host defense peptides: Expanding repertoire and functions. Develop Comp. Immunol., 33: 334-343. doi:10.1016/j.dci.2008.05.006

Shi J., Ross C.R., Chengappa M.M., Sylte M.J., McVey D.S., Blecha F. 1996. Antibacterial activity of synthetic peptide (PR-26) derived from PR-39, a proline-arginine-rich neutrophil antimicrobial peptide. Antimicrob. Agents Ch., 40: 115-121.

Shi J., Ross C.R., Leto T., Blecha F. 1996. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc. Natl. Acad. Sci. 93:6014-6018. doi:10.1073/pnas.93.12.6014

Urban P.L., Amantonico A., Zenobi R. 2011. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. Mass Spectrom. Rev., 30: 435-478. doi:10.1002/mas.20288

Wang Y., Walter G., Herting E., Agerberth B., Johansson J. 2004. Antibacterial activities of the cathelicidins prophenin (residues 62 to 79) and LL-37 in the presence of a lung surfactant preparation. Antimicrob. Agents Ch., 48: 2097-2100. doi:10.1128/AAC.48.6.2097-2100.2004

Wessely-Szponder J. 2008. The influence of TNFa and IL-8 on secretory action of neutrophils isolated from heifers in the course of bovine respiratory disease. Acta Vet. Hung., 56: 187-196. doi:10.1556/AVet.56.2008.2.6

Wessely-Szponder J, Majer-Dziedzic B, Smolira A. 2010. Analysis of antimicrobial peptides from porcine neutrophils. J. Microbiol. Meth., 83: 8-12. doi:10.1016/j.mimet.2010.07.010

Wessely-Szponder J., Szponder T. 2010. Comparison of the effects of two anaesthetic combinations in rabbits on some neutrophil functions in vitro. World Rabbit Sci., 18: 169-177. doi:10.4995/WRS.2010.8414

Wessely-Szponder J., Bobowiec R., Szponder T. 2012. The influence of porcine prophenin on neutrophils isolated from rabbit blood during implantation of calcium sulphate graft material into bone tissue. World Rabbit Sci., 20: 163-171. doi:10.4995/wrs.2012.1149

Zanetti M. 2004. Cathelicidins, multifunctional peptides of innate immunity. J. Leukocyte Biol., 74: 39-48. doi:10.1189/jlb.0403147

Zanetti M. 2005. The role of cathelicidins in the innate host defenses of mammals. Curr. Issues Mol. Biol., 7: 179-96.

Zang G., Ross C.R., Blecha F. 2000. Porcine antimicrobial peptides: New prospects for ancient molecules of host defense. Vet. Res., 31: 277-296. doi:10.1051/vetres:2000121

Downloads

Published

2013-09-27

Issue

Section

Papers