Effects of dietary supplementation with taurine on production performance of Angora rabbits

Gongyan Y. Liu, W. X. Jiang, H. T. Sun, S. X. Gao, L. P. Yang, C. Liu, L. Y. Bai


This study aimed to evaluate the effects of dietary supplementation with taurine on production performance, serum biochemistry, immunoglobulin, antioxidant and hormones of Angora rabbits. A total of 160 8-month-old Angora rabbits with similar body weight were randomly assigned to one of four dietary groups, with 40 animals per group. The dietary groups consisted of the following different taurine supplementation levels: 0 (control), 0.1, 0.2, and 0.3% (air-dry basis). The 73-d feeding trial (from July 31 to October 11, 2016 in China) included a 7-d adjustment period and a 66-d experimental period. The results showed that taurine dietary supplementation had effects on feed consumption, hair follicle density and wool yield of the Angora rabbits (P<0.05), and adding 0.2% taurine could improve the wool yield. Compared with the control group, serum total cholesterol and low-density lipoprotein levels in supplemented groups were decreased (P<0.05). Dietary supplementation with taurine could improve the activity of superoxide dismutase, enhance total antioxidant capacity and reduce the content of malondialdehyde in serum (P<0.05). Besides, the serum level of thyroid (T4) hormone and insulin-like growth factor-1 in experimental groups was higher than that in the control group (P<0.05). In conclusion, taurine dietary supplementation could reduce the lipid metabolism, enhance the antioxidant capacity and hormone level of Angora rabbits, and adding 0.2% taurine could achieve the effect of increasing wool production.


taurine; production performance; blood index; Angora rabbit

Full Text:



Allain D., Rochambeau H.D., Thébault R.G., Vrillon, J.L. 1999. The inheritance of wool quantity and live weight in the French Angora rabbit. Anim. Sci., 68: 441-447. https://doi.org/10.1017/S1357729800050451

Allain D., Rougeot J. 1980. Induction of autumn moult in mink with melatonin. Reprod. Nutr. Develop., 20: 197-201. https://doi.org/10.1051/rnd:19800114

Allain D., Thebault R.G. 1988. Effects of various melatonin treatments on summer wool production in Angora rabbits. In Proc.: 4th World Rabbit Congress, October 1988, Budapest, Hungary.

Association of Official Analytical Chemists (AOAC). 2005. Official methods of analyses. 18th ed. AOAC, Maryland, USA.

Bai L., Jiang W., Wang W., Gao S., Sun H., Yang L., Hu H. 2019. Optimum wool harvest interval of angora rabbits under organised farm conditions in East China. World Rabbit Sci., 27: 57-63. https://doi.org/10.4995/wrs.2019.10838

Bañuelos Vargas I., López L.M., Pérez Jiménez A., Peres H. 2014. Effect of fish meal replacement by soy protein concentrate with taurine supplementation on hepatic intermediary metabolism and antioxidant status of totoaba juveniles (Totoaba macdonaldi ). Comp. Biochem. Phys. B., 170: 18-25. https://doi.org/10.1016/j.cbpb.2014.01.003

Bouckenooghe T., Remacle C., Reusens B. 2006. Is taurine a functional nutrient? Curr. Opin. Clin. Nutr., 9: 728-733. https://doi.org/10.1097/01.mco.0000247469.26414.55

Chang Y., Chou C., Chiu C, Yang K, Lin Y., Weng W., Chen Y. 2010. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J. Agr. Food Chem., 59: 450-457. https://doi.org/10.1021/jf103167u

Cheng C., Guo Z., Wang A. 2018. The protective effects of taurine on oxidative stress, cytoplasmic free-Ca2+ and apoptosis of pufferfish (Takifugu obscurus) under low temperature stress. Fish Shellfish Immun., 77: 457-464. https://doi.org/10.1016/j.fsi.2018.04.022

Chian J., Junichi A., Stephen S. 2012. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids, 42: 2223-2232. https://doi.org/10.1007/s00726-011-0962-7

De Moura L.B., Diógenes A.F., Campelo D.A.V., de Almeida F.L.A., Pousão-Ferreira P.M., Furuya W.M., Oliva-Teles A., Peres H. 2018. Taurine and methionine supplementation as a nutritional strategy for growth promotion of meagre (Argyrosomus regius) fed high plant protein diets. Aquaculture, 497: 389-395. https://doi.org/10.1016/j.aquaculture.2018.07.038

Hayes J., Tipton K.F., Bianchi L., Corte L.D. 2011. Complexities in the neurotoxic actions of 6-hydroxydopamine in relation to the cytoprotective properties of taurine. British Res. Bull., 55: 239-245. https://doi.org/10.1016/S0361-9230(01)00507-X

He J., Zhang K., Chen D., Ding X., Feng G., Ao X. 2013. Effects of maize naturally contaminated with aflatoxin B1 on growth performance, blood profiles and hepatic histopathology in ducks. Livest. Sci., 152: 192-199. https://doi.org/10.1016/j.livsci.2012.12.019

Huang C., Guo Y., Yuan J. 2014a. Dietary taurine impairs intestinal growth and mucosal structure of broiler chickens by increasing toxic bile acid concentrations in the intestine. Poult. Sci., 93: 1475-1483. https://doi.org/10.3382/ps.2013-03533

Huang C.X., Wang B., Min Z., Yuan J. 2014b. Dietary inclusion level and time effects of taurine on broiler performance, meat quality, oxidative status and muscle taurine content. Brit. Poult. Sci., 55: 598-604. https://doi.org/10.1080/00071668.2014.943692

Huang G.J., Deng J.S., Huang S.S., Shao Y.Y., Chen C.C., Kuo Y.H. 2012. Protective effect of antrosterol from Antrodia camphorata submerged whole broth against carbon tetrachloride-induced acute liver injury in mice. Food Chem., 132: 709-716. https://doi.org/10.1016/j.foodchem.2011.11.004

Huang R.S., Peng Z.L. 2008. Effect of diet type and dietary turine supplementation on growth performance of weaning pigs. Cereal Feed Indian, 9: 44-45.

Huxtable R. 1992. Physiological actions of taurine. Physiol. Rev., 72: 101-163. https://doi.org/10.1152/physrev.1992.72.1.101

Katoch S., Smbher V.K., Manuja N.K., Thakur Y.P., Gupta K. 1999. Studies on genetic and phenotypic parameters for wool production traits in Angora rabbits. Indian J. Anim. Res., 33: 126-128.

Lee J.Y., Jung D.W., Park H. A., Kim S. J., Chung J. H., Moon C. K., Kim Y. C. 2004. Effect of taurine on biliary excretion and metabolism of acetaminophen in male hamsters. Biol. Pharm. Bul., 27: 1792-1796. https://doi.org/10.1248/bpb.27.1792

Lima L., Obregon F., Cubillos S., Fazzino F., Jaimes I. 2001. Taurine as a micronutrient in development and regeneration of the central nervous system. Nutr. Neurosci., 4: 439-443. https://doi.org/10.1080/1028415X.2001.11747379

Lima L., Obregon F., Rousso T., Quintal M., Benzo Z., Auladell C. 2004. Content and concentration of taurine, hypotaurine, and zinc in the retina, the hippocampus, and the dentate gyrus of the rat at various postnatal days. Neurochem. Res., 29: 247-255. https://doi.org/10.1023/B:NERE.0000010453.96832.97

Liu Y., Mao X., Yu B., He J., Zheng P., Yu J., Luo J., Chen D. 2014. Excessive dietary taurine supplementation reduces growth performance, liver and intestinal health of weaned pigs. Livest. Sci., 168: 109-119. https://doi.org/10.1016/j.livsci.2014.08.014

Matsunari H., Furuita H., Yamamoto T., Kim S.K., Sakakura Y., Takeuchi T. 2008. Effect of dietary taurine and cystine on growth performance of juvenile red sea bream Pagrus major. Aquaculture, 274: 142-147. https://doi.org/10.1016/j.aquaculture.2007.11.002

Militante J.D., Lombardini J.B. 2002. Taurine: evidence of physiological function in the retina. Nutr. Neurosci., 5: 75. https://doi.org/10.1080/10284150290018991

Morales A.E., Pérez-Jiménez A., Hidalgo M.C., Abellán E., Cardenete G. 2004. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Phys. C., 139: 153-161. https://doi.org/10.1016/j.cca.2004.10.008

Murakami S., Sakurai T., Tomoike H., Sakono M., Nasu T., Fukuda N. 2010. Prevention of hypercholesterolemia and atherosclerosis in the hyperlipidemia and atherosclerosis-prone Japanese (LAP) quail by taurine supplementation. Amino Acids, 38: 271-278. https://doi.org/10.1007/s00726-009-0247-6

National Research Council (NRC) 1977. Nutrient requirements of rabbits, 2nd ed. National Academy Press, Washington, DC, USA.

Park G.S., Takeuchi T., Yokoyama M., Seikai T. 2002. Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fisheries Sci., 68: 824-829. https://doi.org/10.1046/j.1444-2906.2002.00498.x

Pasantes-Morales H., Quesada O., Moran J. 1998. Taurine: an osmolyte in mammalian tissues. Adv. Exp. Med. Biol., 442: 209. https://doi.org/10.1007/978-1-4899-0117-0_27

Pérez-Jiménez A., Peres H., Rubio V. C., Oliva-Teles A. 2012. The effect of hypoxia onintermediary metabolism and oxidative status in gilthead sea bream (Sparus aurata) fed on diets supplemented with methionine and white tea. Comp. Biochem. Phys. C., 155: 506-516. https://doi.org/10.1016/j.cbpc.2011.12.005

Rafat S.A., Allain D., Thebault R.G., Rochambeau H. D. 2007. Divergent selection for fleece weight in French Angora rabbits: Non-genetic effects, genetic parameters and response to selection. Livest. Sci., 106: 169-175. https://doi.org/10.1016/j.livsci.2006.08.001

Redmond H.P., Stapleton P., Neary P., Bouchier-Hayes D. 1998. Immunonutrition: the role of taurine. Nutrition, 14: 599-604. https://doi.org/10.1016/S0899-9007(98)00097-5

Roghayeh D., Amin O., Mansour T. M., Vahid M., Dara B. 2020. Effects of dietary taurine on growth performance, antioxidant status, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus. Aquaculture, 517: 734795. https://doi.org/10.1016/j.aquaculture.2019.734795

Rosemberg D.B., da Rocha R.F., Rico E.P., Zanotto-Filho A.L.F.E.U., Dias R.D., Bogo M.R., Souza D.O. 2010. Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebra fish brain. Neuroscience, 171: 683-692. https://doi.org/10.1016/j.neuroscience.2010.09.030

Rougeot, J., Thebault R.G., Allain D. 1986. Suppression de la chute estivale de la production du poil chez la lapine angora par la pose d’implants de mélatonine. Annales de Zootechnie 35: 363-372. https://doi.org/10.1051/animres:19860405

Salze G.P., Davis D.A. 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture, 437: 215-229. https://doi.org/10.1016/j.aquaculture.2014.12.006

Schaffer S.W., Ito T., Azuma J. 2014. Clinical significance of taurine. Amino Acids, 46: 1-5. https://doi.org/10.1007/s00726-013-1632-8

Schaffer S., Kim H.W. 2018. Effects and mechanisms of taurine as a therapeutic agent. Biomol. Ther. (Seoul), 26: 225-241. https://doi.org/10.4062/biomolther.2017.251

Schlink A.C., Liu S.M. 2003. Angora Rabbits: A Potential New Industry for Australia: a report for the Rural Industries Research and Development Corporation. CSIRO Livestock Industries. RIRDC Publication No 03/014, RIRDC Project No CSA-19A. pp.34.

Smith J.M., van Amburgh M.E., Díaz M.C., Lucy M.C., Bauman D.E. 2002. Effect of nutrient intake on the development of the somatotropic axis and its responsiveness to GH in Holstein bull calves. J. Anim. Sci., 80: 1528-1537. https://doi.org/10.2527/2002.8061528x

State Bureau of Technical Supervision of the People’s Republic of China, GB/T 5009.169-2003. Determination of Taurine in Foods. Beijing: China Standards Press.

Surai P.F., Fisinin V.I. 2016a. Vitagenes in poultry production: Part 2. Nutritional and internal stresses. World Poultry Sci. J., 72: 761-772. https://doi.org/10.1017/S0043933916000726

Surai P.F., Fisinin V.I. 2016b. Vitagenes in poultry production: part 1. Technological and environmental stresses. World Poultry Sci. J., 72: 721-734. https://doi.org/10.1017/S0043933916000714

Tdolini B., Pintus G., Pinna G.G., Bennardini F., Franconi F. 1995. Effects of taurine and hypotaurine on lipid peroxidation. Biochem. Bioph. Res. Co., 213: 820-826. https://doi.org/10.1006/bbrc.1995.2203

Thébault R.G., Vrillon J.L., Allain D., Fahrat D., Rochambeau H.D. 1992. Effect of non-genetics factors on quantitative and qualitative features about Angora wool production in French farms. J. Applied Rabbit Res., 15: 1568-1575.

Thompson G.N., Tomas F.M. 1987. Protein metabolism in cystic fibrosis: responses to malnutrition and taurine supplementation. Am. J. Clin. Nutr., 46: 606-613. https://doi.org/10.1093/ajcn/46.4.606

Tong S., Wang L., Kalhoro H., Volatiana J.A., Shao Q. 2019. Effects of supplementing taurine in all-plant protein diets on growth performance, serum parameters, and cholesterol 7α-hydroxylase gene expression in black sea bream, Acanthopagrus schlegelii. J. World Aquacult. Soc., 51: 990-1001. https://doi.org/10.1111/jwas.12611

Wang F., Dong X., Zhang X., Tong J., Xie Z., Zhang Q. 2010a. Effects of dietary taurine on egg production, egg quality and cholesterol levels in Japanese quail. J. Sci. Food Agr., 90: 2660-2663. https://doi.org/10.1002/jsfa.4136

Wang F., Dong X., Zhang X., Tong J., Zhang Q. 2010b. Effects of taurine on egg production, immune responses and fat metabolism in laying quails. Food Sci. Biotechnol., 3: 381-384.

Wright C.E., Tallan H.H., Lin Y.Y. 1986. Taurine: biological update. Annu. Rev. Biochem., 55: 427-453. https://doi.org/10.1146/annurev.bi.55.070186.002235

Yannis K., Vikas K., Theofania T. 2019. Effects of taurine supplementation in soy-based diets on growth performance and fillet quality in European sea bass (Dicentrarchus labrax). Aquaculture, 11: 734655. https://doi.org/10.1016/j.aquaculture.2019.734655

Yun B., Ai Q., Mai K., Xu W., Qi G., Luo Y. 2012. Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture, 324: 85-91. https://doi.org/10.1016/j.aquaculture.2011.10.012

Zeng D., Gao Z., Huang X., Zhao J., Huang G., Duo L. 2012. Effect of taurine on lipid metabolism of broilers. J. Applied Anim. Res., 40: 86-89. https://doi.org/10.1080/09712119.2011.588386

Zhang M., Li M., Wang R., Qian Y. 2018. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immun., 79: 313-320. https://doi.org/10.1016/j.fsi.2018.05.036

Zhu Y., Wu Z., Liu H., Liu G., Li F. 2019. Methionine promotes the development of hair follicles via the Wnt/β-catenin signalling pathway in Rex rabbits. J. Anim. Physiol. Anim. Nutr., 00: 1-6. https://doi.org/10.1111/jpn.13238

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


 Universitat Politècnica de València


Official journal of the World Rabbit Science Association (WRSA)


e-ISSN: 1989-8886     ISSN: 1257-5011   https://doi.org/10.4995/wrs