Divergent selection for fat index in Pannon Ka rabbits: genetic parameters, selection response





divergent selection, fat index, rabbit


The objective of this study was to estimate the response to selection for total body fat content of rabbits measured by computer tomography (CT). A divergent selection experiment was performed using Pannon Ka rabbits, which were previously selected for number of kits born alive. The so-called zero generation consisted of 351 Pannon Ka rabbits, from which the index, total body fat volume (cm3) divided by the body weight (kg), was measured. Rabbits with low and high fat index values were selected to form the parent groups of the lean and fat lines, respectively. The lines consisted of 55-72 females and 35-47 males, depending on the line and generation. After three generations, the rabbits were evaluated by means of a single trait animal model. The fat index showed a moderate heritability estimate (0.28±0.03). The magnitude of the common litter effect was small (0.10±0.02). The breeding values averaged per generation provided slightly asymmetrical responses. Based on the results, the divergent selection was successful in confirming that CT is a very suitable method for performing selection for body composition traits.


Download data is not yet available.

Author Biographies

R. Kasza, Kaposvár University

Faculty of Agricultural and Environmental Sciences

ZS. Matics, Kaposvár University

Faculty of Agricultural and Environmental Sciences

ZS. Gerencsér, Kaposvár University

Faculty of Agricultural and Environmental Sciences

T. Donkó, Kaposvár University

Faculty of Agricultural and Environmental Sciences


Medicopus Nonprofit Ltd.

I. Radnai, Kaposvár University

Faculty of Agricultural and Environmental Sciences

ZS. Szendrő, Kaposvár University

Faculty of Agricultural and Environmental Sciences

I. Nagy, Kaposvár University

Faculty of Agricultural and Environmental Sciences


Al-Saef A.M., Khalil M.H., Al-Dobaib S.N., Al-Homidan A.H., García M.L., Baselga M. 2008. Comparing Saudi synthetic lines of rabbits with the founder breeds for carcass, lean composition and meat quality traits. Livest. Res. Rural Dev., 20: 1-12.

Donkó T., Czakó B., Kovács Gy., Petneházy Ö., Kasza R., Szendrő Zs., Garamvölgyi R., Matics Zs. 2016. Total body fat content determination by means of computed tomography (CT) in rabbits. In: Proceedings of the 11th World Rabbit Congress, 16-18 June 2016, Qingdao, China, pp. 753-756.

Fortun-Lamothe L. 2006. Energy balance and reproductive performance in rabbit does. Anim. Reprod. Sci., 93: 1-15. https://doi.org/10.1016/j.anireprosci.2005.06.009

Garreau H., Eady S.J., Hurtaud J., Legarra A. 2008. Genetic parameters of production traits and resistance to digestive disorders in a commercial rabbit population. In: Xiccato G., Trocino A., Lukefahr S. (eds.) In Proc.: 9th World Rabbit Congress. Fondazione Iniziative Zooprofilattiche e Zootechniche, Verona, Italy, pp. 103-108.

Falconer D.S., Mackay T.F.C. 1996. Introduction to Quantitative Genetics. 4th Ed. Longman, London, UK. 1-464.

Garreau H., Larzul C., Tudela F., Ruesche J., Ducqrocq V., Fortun-Lamothe L. 2017. Energy balance and body reserves in rabbit females selected for longevity. World Rabbit Sci., 25: 205-213. https://doi.org/10.4995/wrs.2017.5216

Groeneveld E. 1990. PEST Users’ Manual. Institute of Animal Husbandry and Animal Behaviour Federal Research Centre, Neustadt, Germany 1-61.

Groeneveld E., Kovac M., Mielenz N. 2008. VCE User’s Guide and Reference manual. Version 6.0. Institute of Farm Animal Genetics, Neustadt, Germany, 1-125.

Larzul C., de Rochambeau H. 2005. Selection for residual feed consumption in the rabbit. Livest. Prod. Sci., 95: 67-72. https://doi.org/10.1016/j.livprodsci.2004.12.007

Larzul C., Gondret F., Combes S., de Rochambeau H. 2005. Divergent selection on 63-day body weight in the rabbit: response on growth, carcass and muscle traits. Genet. Sel. Evol., 37: 105-122. https://doi.org/10.1051/gse:2004038

Martínez-Álvaro M., Hernández P., Blasco A. 2016. Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters. J. Anim. Sci., 94: 4993-5003. https://doi.org/10.2527/jas.2016-0590

Matics Zs., Nagy I., Gerencsér Zs., Radnai I., Gyovai P., Donkó T., Dalle Zotte A., Curik I., Szendrő Zs. 2014. Pannon breeding program in rabbit at Kaposvár University. World Rabbit Sci., 22: 287-300. https://doi.org/10.4995/wrs.2014.1511

Milisits G., Romvári R., Dalle Zotte A., Szendrő Zs. 1999. Non-invasive study of changes in body composition in rabbits during pregnancy using X-ray computerized tomography. Ann. Zootech., 48: 25-34. https://doi.org/10.1051/animres:19990103

Nagy I., Ibáñez N., Mekkawy W., Metzger Sz., Horn P., Szendrő Zs. 2006. Genetic parameters of growth and in vivo computerized tomography based carcass traits in Pannon White rabbits. Livest. Sci., 104: 46-52. https://doi.org/10.1016/j.livsci.2006.03.009

Romvári R., Milisits G., Szendrő Zs., Sørensen P. 1996. Non invasive method to study the body composition of rabbits by X-ray computerized tomography. World Rabbit Sci., 4: 219-224. https://doi.org/10.4995/wrs.1996.298

Rouvier R. 1970. Variabilité génétique du rendement a l’abattage et de la composition anatomique de lapins de trois races. Ann Genet. Sel. Anim., 2: 325-346. https://doi.org/10.1186/1297-9686-2-3-325

Shemeis A., Abdallah O.Y. 2000. Possibilities of developing favourable body fat partition via selection indexes – application on rabbits. Arch. Anim. Breed., 43: 193-202. https://doi.org/10.5194/aab-43-193-2000

Szendrő Zs., Romvári R., Horn P., Radnai I., Bíró-Németh E., Milisits G. 1996. Two-way selection for carcass traits by computerised tomography. In: Proc. 6th World Rabbit Congress, Toulouse, 2, 371-375.

Szendrő Zs., Metzger Sz., Nagy I., Szabó A., Petrási Zs., Donkó T., Horn P. 2012. Effect of divergent selection for the computer tomography measured thigh muscle volume on productive and carcass traits of growing rabbits. Livest. Sci., 149: 167-172. https://doi.org/10.1016/j.livsci.2012.07.011

Zomeño C., Hernández P., Blasco A. 2013. Divergent selection for intramuscular fat content in rabbits. 1. Direct response to selection. J. Anim. Sci., 91: 4526-4531. https://doi.org/10.2527/jas.2013-6361