Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits

S.I. Ramadan, E.A. Manaa, M.E. El-Attrony, A.G. EL Nagar


The objectives of the present study were 1) to evaluate the polymorphism of growth hormone(GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes in Sinai Gabali rabbits, and 2) to assess their associations with growth, litter size and milk production traits in Sinai Gabali rabbits. The C>T, A>Del and A>G single nucleotide polymorphisms of GH, IGF2 and PGR genes were genotyped by polymerase chain reaction-restriction fragment length polymorphism using BstUI, HpyF31 and BsaI restriction enzymes, respectively. The C/T genotype of GH gene recorded the heaviest body weights for body weight (BW) at 8 wk (1190.22±19.29 g) and 12 wk of age (1842.46±30.19 g) and recorded the largest litter size at birth (LSB: 7.37±0.12 kits) traits. The Del/Del genotype of IGF2 gene showed the superiority over the other genotypes for BW at 4 wk (507.17±8.87 g), 8 wk (1239.39±14.0 g), and 12 wk of age (1950.15±18.1 g), as well as for daily weight gain from 4 to 8 wk (26.05±0.37 g/d), and from 8 to 12 wk of age (25.48±0.56 g/d) traits. The G/G genotype of the PGR gene showed superiority for LSB (7.51±0.13 kits) and litter size at weaning (6.53±0.14 kits) traits over the other genotypes. Regarding milk yield traits; the C/C, A/A and A/A genotypes of GH, IGF2 and PGR genes yielded more milk compared to the other genotypes. The means of total milk yield in 28 d for these genotypes were 2936±29 g, 2921±43 g and 2930±35 g, respectively. Thus, GH, IGF2 and PGR genes might be useful for marker-assisted selection programmes for improvement of rabbit growth, litter size and milk yield traits.


gene polymorphism; growth; litter size; milk yield; PCR; RFLP; rabbits

Full Text:



Abd El-Ghany S.M. 2015 Genetic studies on growth hormone as a physiological indicator in rabbits. M.Sc. Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt.

Abdel-Kafy E., Gafer J., Shaaban H. 2014. Impact of insulin-like growth factor-II polymorphisms on growth and reproductive traits in rabbits. Arab J. Biotechnol., 17: 121-132.

Abdel-Kafy E., Hussein B., Abdel-Ghany S., El-Din A., Badawi Y. 2015. Single nucleotide polymorphisms in growth hormone gene are associated with some performance traits in Rabbit. IJBPAS. 4: 490-504.

Afifi E. 2002. The Gabali Rabbits (Egypt). In: Khalil M.H. (ed.), Baselga M. (ed.). Rabbit genetic resources in Mediterranean countries. Zaragoza: CIHEAM, (Options Méditerranéennes: Série B. Etudes et Recherches). 38: 55-64.

Amalianingsih T., Brahmantiyo B. 2014. The Variability of Growth Hormone Gene Associated with Ultrasound Imaging of Longissimus dorsi Muscle and Perirenal Fat in Rabbits. Media Peternakan. 37: 1-7.

Argente M., Merchán M., Peiró R., García M., Santacreu M., Folch J., Blasco A. 2010. Candidate gene analysis for reproductive traits in two lines of rabbits divergently selected for uterine capacity. J. Anim. Sci., 88: 828-836.

Badr O.A., EL-Shawaf I.S., Khalil M.H., Refaat M.H., El-Zarei M.F. 2016. Assessment of genetic variability among some rabbit breeds using RAPD-DNA technique. 2016. 3rd International Conference On Biotechnology Applications In Agriculture, Benha University, Moshtohor and Sharm El-Sheikh, 5-9, April, Egypt. pp 1-5.

Badr O., El-Shawaf I., Khalil M., Refaat M., Ramadan S. 2019. Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds. World Rabbit Sci., 27: 135-141.

Bagnicka E., Siadkowska E., Strzałkowska N., Żelazowska B., Flisikowski K., Krzyżewski J., Zwierzchowski L. 2010. Association of polymorphisms in exons 2 and 10 of the insulin-like growth factor 2 (IGF2) gene with milk production traits in Polish Holstein-Friesian cattle. J. Dairy Res., 77: 37-42.

Buys N., Abeele G., Stinckens A., Deley J., Georges M. 2006 Effect of the IGF2-intron3-G3072A mutation on prolificacy in sows. In Proc.: 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13-18 August, 2006. Instituto Prociência, pp. 06-22.

Cartuche L., Pascual M., Gómez E., Blasco A. 2014. Economic weights in rabbit meat production. World Rabbit Sci., 22: 165-177.

Conneely O.M., Mulac-Jericevic B., Demayo F., Lydon J.P., O’Malley B.W. 2002. Reproductive functions of progesterone receptors. Recent. Prog. Horm. Res., 57: 339-356.

El-Aksher S.H., Sherif H., Khalil M., El-Garhy H.A., Ramadan S. 2017. Molecular analysis of a new synthetic rabbit line and their parental populations using microsatellite and SNP markers. Gene Rep., 8: 17-23.

Fontanesi L., Dall’Olio S., Spaccapaniccia E., Scotti E., Fornasini D., Frabetti A., Russo V. 2012a. A single nucleotide polymorphism in the rabbit growth hormone (GH1) gene is associated with market weight in a commercial rabbit population. Livest. Sci., 147: 84-88.

Fontanesi L., Mazzoni G., Bovo S., Frabetti A., Fornasini D., Dall’Olio S., Russo V. 2012b. Association between a polymorphism in the IGF 2 gene and finishing weight in a commercial rabbit population. Anim. Genet., 43: 651-652.

Fontanesi L., Tazzoli M., Scotti E., Russo V. 2008 Analysis of candidate genes for meat production traits in domestic rabbit breeds. In Proc.: 9th World Rabbit Congress, 10-13 June 2008, Verona, Italy. pp. 79-84.

Fouzia K.B., Homrani A., Ammam A. 2017. Population structure and genetic diversity using microsatellite markers of four Algerian rabbit populations precludes hybridization with foreign breeds. SAJEB. 7: 191-200.

Gad S. 1998 Evaluation of growth and production performance of Al-Gabali rabbits and their crosses under semi-arid conditions. M. Sc. Thesis, Faculty of Agriculture, Moshtohor, Zagazig, University, Benha.

Galal O.A,, Rehan M., Abd El-Karim R.E. 2013. Analysis of genetic diversity within and among four rabbit genotypes using biochemical and molecular genetic markers. Afr. J. Biotechnol., 12: 2830-2839.

García M., Peiró R., Argente M., Merchán M., Folch J., Blasco A., Santacreu M. 2010. Investigation of the oviductal glycoprotein 1 (OVGP1) gene associated with embryo survival and development in the rabbit. J. Anim. Sci., 88: 1597-1602.

Hull K., Harvey S. 2002. GH as a co-gonadotropin: the relevance of correlative changes in GH secretion and reproductive state. J. Endocrinol., 172: 1-19.

Husvéth F. 2011. Physiological and reproductional aspects of animal production. Debrecen University, University of West Hungary, Pannon University. p3.

Iraqi M., García M., Khalil M., Baselga M. 2010a. Evaluation of milk yield and some related maternal traits in a crossbreeding project of Egyptian Gabali breed with Spanish V-line in rabbits. J. Anim. Breed. Genet., 127: 242-248.

Iraqi M., Shenana M., Baselga M. 2010b. Some factors affecting production and milk composition characters in a crossbreeding experiment involving Gabali and V-line rabbits in Egypt. World Rabbit Sci., 15: 151-159.

Khalil M. 1999. Rabbit genetic resources of Egypt. Animal Genetic Resources (FAO). 26: 95-111.

Khalil M., Afifi E. 2000 Heterosis, maternal and direct additive effects for litter performance and postweaning growth in Gabali rabbits and their F1 crosses with New Zealand White. In Proc.: 7th World Rabbit Congress, Valencia, Spain. pp. 4-7.

Khalil M., Baselga M., 2002 Rabbit genetic resources in Mediterranean countries. In Khalil M. H. and M. Baselga (eds), Options Méditerranéennes. CIHEAM-IAMZ, Zaragoza, Spain, pp. 262.

Lucy M. 2008. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod. Domest. Anim., 43: 31-39.

McNitt J., Lukefahr S. 1990. Effects of breed, parity, day of lactation and number of kits on milk production of rabbits. J. Anim. Sci., 68: 1505-1512.

Merchán M., Peiró R., Argente M., Santacreu M., García M., Blasco A., Folch J. 2009. Analysis of the oviductal glycoprotein 1 polymorphisms and their effects on components of litter size in rabbits. Anim. Genet., 40: 756-758.

Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., Lee D., 2002 BLUPF90 and related programs (BGF90). In Proc.: 7th world congress on genetics applied to livestock production. pp. 743-744.

Mohamed E.A., Abdelfatah M.G. 2018. Genetic diversity assessment among six rabbit breeds using RAPD and SRAP markers. Egypt. J. Genet. Cytol., 47: 161-173.

Mullen M., Lynch C., Waters S., Howard D., O’boyle P., Kenny D., Buckley F., Horan B., Diskin M. 2011. Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows. Genet. Mol. Res., 10: 1819-1830.

Ola S.I., Ai J.S., Liu J.H., Wang Q., Wang Z.B., Chen D.Y., Sun Q.Y. 2008. Effects of gonadotrophins, growth hormone, and activin A on enzymatically isolated follicle growth, oocyte chromatin organization, and steroid secretion. Mol. Reprod. Dev., 75: 89-96.

Peakall P., Smouse R. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research –an update. Bioinformatics. 28: 2537-2539.

Peiró R., Herrler A., Santacreu M., Merchán M., Argente M., García M., Folch J., Blasco A. 2010. Expression of progesterone receptor related to the polymorphism in the PGR gene in the rabbit reproductive tract. J. Anim. Sci., 88: 421-427.

Peiró R., Merchan M., Santacreu M.A., Argente M.J., García M.L., Folch J.M., Blasco A. 2008. Identification of single-nucleotide polymorphism in the progesterone receptor gene and its association with reproductive traits in rabbits. Genetics. 180: 1699-1705.

Rabie T. 2019. Genetic appraisal of red Baladi and Sinai Gabali rabbits sing microsatellite mrkers and DNA barcoding. EPSJ. 39: 235-251.

Reksen O., Gröhn Y., Havrevoll Ø., Bolstad T., Waldmann A., Ropstad E. 2002. Relationships among milk progesterone, concentrate allocation, energy balance, milk yield and conception rate in Norwegian cattle. Anim. Reprod. Sci., 73: 169-184.

Renaville R., Hammadi M., Portetelle D. 2002. Role of the somatotropic axis in the mammalian metabolism. Domest. Anim. Endocrinol., 23: 351-360.

Russo V., Fontanesi L., Scotti E., Beretti F., Davoli R., Nanni Costa L., Virgili R., Buttazzoni L. 2008. Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs. J. Anim. Sci., 86: 3300-3314.

Silva J., Figueiredo J., Van den Hurk R. 2009. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology. 71: 1193-1208.

Sirotkin A., Mertin D., Süvegová K., Makarevich A., Mikulova E. 2003. Effect of GH and IGF-I treatment on reproduction, growth, and plasma hormone concentrations in domestic nutria (Myocastor coypus). Gen. Comp. Endocr., 131: 296-301.

Wang P., Lu L., Chu M., Zhang B., Fang L., Ma Y., Li K. 2009. Polymorphism of progesterone receptor gene and its relationship with litter size of Jining Grey goats. Scientia Agricultura Sinica. 42: 1768-1775.

Zhang C., Liu Y., Huang K., Zeng W., Xu D., Wen Q., Yang L. 2011. The association of two single nucleotide polymorphisms (SNPs) in growth hormone (GH) gene with litter size and superovulation response in goat-breeds. Genet. Mol. Biol., 34: 49-55.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


 Universitat Politècnica de València


Official journal of the World Rabbit Science Association (WRSA)


e-ISSN: 1989-8886     ISSN: 1257-5011