Reliability of acid-insoluble ash as internal marker for the measurement of digestibility in rabbits

G. Papadomichelakis, K. Fegeros


The present study aimed to evaluate acid-insoluble ash (AIA) as an internal marker for the measurement the coefficient of total tract apparent digestibility (CTTAD) in rabbits through two experiments (E1 and E2). In E1, 48 rabbits were used to calculate the CTTAD of the same basal diet according to the European reference method (ERM), the AIA and the titanium dioxide (TiO2 with 1 g of TiO2/kg diet) techniques (n=16 rabbits/method). The effect of feed sample quantity on dietary AIA content was investigated and total collection of faeces was carried out to calculate marker recovery. In E2, 48 rabbits were allotted to three groups fed diets with no sugar beet pulp (SBP0) or with 100 (SBP100) and 200 (SBP200) g sugar beet pulp/kg (n=16 rabbits/group). Each group was divided into two subgroups, ERM and AIA (n=8 rabbits/subgroup), in which CTTAD was measured using the European reference and AIA method, respectively. In AIA subgroups, only 10% of the total daily faecal output was sampled from 9:00 to 9:30 am. Feed analysis in E1 showed that increasing sample quantity from 5 to 9 g did not affect the dietary AIA content; however, the analytical error was 7 and 5 times lower (P<0.05) for 9 g, when compared to 5 and 7 g samples. Feed analysis also showed 1.030±0.003 g TiO2/kg diet. Faecal marker recovery was 99.80±0.03 and 96.89±0.16% for AIA and TiO2, respectively. The CTTAD of dry matter (DM), did not differ between methods in E1, but a 5-fold higher variability (P<0.05) was observed for the TiO2 technique in comparison with the ERM and AIA methods. Also, no differences in the CTTAD of DM between the ERM and AIA methods were found in E2. In conclusion, AIA is a reliable internal marker in rabbits and offers the possibility of measuring the CTTAD of diets with precision, when complete faecal collection or feed intake measurement is not possible.


acid-insoluble ash; European reference method; rabbits; titanium dioxide; total tract apparent digestibility

Full Text:



I.C., Aldrich C.G., Kohles M. 2017. The effect of feed form on diet digestibility and caecal parameters in rabbits. Animals, 7: 95-106.

Bakker G.C.M., Jongbloed A.W. 1994. The effect of housing system on apparent digestibility in pigs, using the classical and marker (chromic oxide, acid-insoluble ash) techniques, in relation to dietary composition. J. Sci. Food Agr., 64: 107-115.

Bovera F., Lestingi A., Marono S., Iannaccone F., Nizza S., Mallardo K., de Martino L., Tateo A. 2012. Effect of dietary mannan-oligosaccharides on in vivo performance, nutrient digestibility and caecal content characteristics of growing rabbits. J. Anim. Phys. Anim. Nut., 96: 130-136.

Cuddeford D., Hughes D. 1990. A comparison between chromium-mordanted hay and acid-insoluble ash to determine apparent digestibility of a chaffed, molassed hay/straw mixture. Equine Vet. J., 22: 122-125.

de Blas C., Mateos G.G. 2010. Feed formulation. In “The Nutrition of the Rabbit (2nd edn)”. (Eds. C. de Blas, J. Wiseman) pp. 222-231. CAB International: Wallingford, UK.

De Silva S.S. 1985. Evaluation of the use of internal and external markers in digestibility studies. In “Finfish Nutrition in Asia. Methodological Approaches to Research and Development”. (Eds. C.Y. Cho, C.B. Cowey, T. Watanabe) pp. 96-102. International Development Research Centre: Ottawa, Canada.

Di Meo, Bovera F., Marono S., Vella N., Nizza A. 2007. Effect of feed restriction on performance and feed digestibility in rabbits. Italian J. Anim. Sci., 6: 765-767.

European Group on Rabbit Nutrition (E.G.R.A.N.) 2001. Technical note: attempts to harmonize chemical analyses of feeds and faeces, for rabbit feed evaluation. World Rabbit Sci., 9: 57-64.

FEDNA (2003). Fundación Española para el Desarrollo de la Nutrición Animal. In C. De Blas, G. G. Mateos, & P. G. Rebollar (Eds.), Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos (2nd ed.). Madrid, Spain: FEDNA.

Furuichi Y., Takahashi T. 1981. Evaluation of acid insoluble ash as a marker in digestion studies. Agric. Biol. Chem., 45: 2219-2224.

Goachet A.G., Philippeau C., Varloud M., Julliand V. 2009. Adaptations to standard approaches for measuring total tract apparent digestibility and gastrointestinal retention time in horses in training. Anim. Feed Sci. Technol., 152: 141-151.

Hill R.C., Burrows G.W., Ellison G.W., Bauer J.E. 1996. The use of chromic oxide as a marker for measuring small intestinal digestibility in cannulated dogs. J. Anim. Sci., 74: 1629-1634.

Huang T.C., Ulrich H.E., McCay C.M. 1954. Antibiotics, growth, food utilization and the use of chromic oxide in studies with rabbits: one figure. J. Nutrition, 4: 621-630.

Jagger S., Wiseman J., Cole D.J.A. Craigon J. 1992. Evaluation of inert markers for the determination of ileal and faecal apparent digestibility values in the pig. Br. J. Nutr., 68: 729-739.

Jha R., Berrocoso J.D. 2015. Review: dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal, 9: 1441-1452.

Jones P.L., De Silva S.S. 1998. Comparison of internal and external markers in digestibility studies involving the Australian freshwater crayfish, Cherax destructor Clark (Decapoda, Parastacidae). Aquac. Res., 29: 487-493.

Jongbloed A.W., Bakker J.G.M., Goedhart P.W., Krol-Kramer F. 1991. Evaluation of chromic oxide with lower concentration and of HCl-insoluble ash as markers for measuring overall apparent digestibility of some dietary nutrients for pigs. In Proc.: 5th International Symposium on Digestive Physiology in Pigs, Vol. 54. EAAP Publication, pp. 325-329.

Gidenne T. 2015. Dietary fibres in the nutrition of the growing rabbit and recommendations to preserve digestive health: a review. Animal, 9: 227-242.

Kavanagh S., Lynch P.B., O’Mara F., Caffrey P.J. 2001. A comparison of total collection and marker technique for the measurement of apparent digestibility of diets for growing pigs. Anim. Feed Sci. Tech., 89: 49-58.

Kotb A.R., Luckey T.D. 1972. Markers in nutrition. Nutr. Abstr. Rev., 42: 813-845.

Marais J.P. 2000. Use of markers. In: “Farm Animal Metabolism and Nutrition”. (Ed. J.P.F. Mello) pp. 255-277. CAB International: Wallingford, UK.

McCarthy J.F., Aherne F.X., Okai D.B. 1974. Use of HCl insoluble ash as an index material for determining apparent digestibility with pigs. Can. J. Anim. Sci., 54: 107-109.

Moughan P.J., Smith W.C., Schrama J., Smits C. 1991. Chromic oxide and acid-insoluble ash as faecal markers in digestibility studies with young growing pigs. N.Z. J. Agr. Res., 34: 85-88.

Myers W.D., Ludden P.A., Nayigihugu V., Hess B.W. 2004. Technical Note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci., 82: 179-183.

Peiretti P.G., Meineri G. 2008. Effect of golden flaxseed supplementation on the performance and feed digestibility of rabbits. J. Anim. Vet. Adv., 7: 56-60.

Perez J.M., Lebas F., Gidenne T., Maertens L., Xiccato G., Parigi-Bini R., Dalle Zotte A., Cossu M.E., Carazzolo A., Villamide M.J., Carabaño R., Fraga M.J., Ramos M.A., Cervera C., Blas E., Fernandez J., Falcao-e-Cunha L., Bengala Freire J. 1995. European reference method for in vivo determination of diet digestibility in rabbits. World Rabbit Sci., 3: 41-43.

Piaggio L.M., Pratas Ê.R., Pires F.F., Ospina H. 1991. Evaluation of acid insoluble ash, nondigestible acid detergent fibre and nondigestible acid detergent lignin as internal markers of digestibility. Rev. Soc. Bras. Zoot., 20: 306-312.

Rymer C. 2000. The measurement of forage digestibility in vivo. In: “Forage Evaluation in Ruminants”. (Eds. D.I. Givens, E. Owen, R.F.E. Axford, H.M. Ohmed) pp. 113-132. (CAB International: Wallingford, UK).

Safwat A.M., Sarmiento-Franco L., Santos-Ricalde R.H., Nieves D., Sandoval-Castro C.A. 2015. Estimating apparent nutrient digestibility of diets containing Leucaena leucocephala or Moringa oleifera leaf meals for growing rabbits by two methods. Asian Australas. J. Anim. Sci., 28: 1155-1162.

Sales J., Janssens G.P.J. 2003. Acid-insoluble ash as a marker in digestibility studies: a review. J. Anim. Feed Sci., 12: 383-401.

Sunvold G.D., Cochran R.C. 1991. Technical note: evaluation of acid detergent lignin, alkaline peroxide lignin, acid insoluble ash, and indigestible acid detergent fiber as internal markers for prediction of alfalfa, bromegrass, and prairie hay digestibility by beef steers. J. Anim. Sci., 69: 4951-4955.

Thonney M.L., Palhof B.A., DeCarlo M.R., Ross D.A., Firth N.L., Quaas R.L., Perosio D.J., Duhaime D.J., Rolins S.R., Nour A.Y.M. 1985. Sources of variation of dry matter digestibility measured by the acid insoluble ash marker. J. Dairy Sci., 68: 661-668.

Trocino A., García J., Carabaño R., Xiccato G. 2013. A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Sci., 21: 1-15.

Undersander D.J., Cole N.A., Naylor C.H., 1987. Digestibility by lambs of water-stressed alfalfa as determined by total collection or internal markers. J. Dairy Sci., 70: 1719-1723.

Van Amburgh M.E., Voorhees J.E. Robertson J.B. 1999. Total dietary and soluble fiber content of selected ruminant feeds. Proc. Cornell Nutr. Conf. for Feed Manufacturers, 196.

Van Keulen J., Young B.A. 1977. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci., 44: 282-287.

Vogtmann H., Pfirter H.P., Prabucki A.L. 1975. A new method of determining metabolizability of energy and digestibility of fatty acids in broiler diets. Brit. Poultry Sci., 16: 531-534.

Yin Y.L., McEvoy J.D., Schulze H., McCracken K.J. 2000. Studies on cannulation method and alternative indigestible markers and the effects of food enzyme supplementation in barley-based diets on ileal and overall apparent digestibility in growing pigs. Anim. Sci., 70: 63-72.

Yin Y.L., McEvoy J.D., Schulze H., McCracken K.J. 2001. Effects of xylanase and antibiotic addition on ileal and faecal apparent digestibilities of dietary nutrients and evaluating HCl-insoluble ash as a dietary marker in growing pigs. Anim. Sci., 72: 95-103.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Sand accumulation in the digestive tract of rabbits ( Oryctolagus cuniculus ) and guinea pigs ( Cavia porcellus ): The role of the appendix
Nicole Winter, Marcus Clauss, Daryl Codron, Jürgen Hummel, Jaqueline Müller, Henning Richter, Patrick Kircher, Jean‐Michel Hatt, Louise Françoise Martin
Journal of Morphology  year: 2021  
doi: 10.1002/jmor.21423

 Universitat Politècnica de València

Official journal of the World Rabbit Science Association (WRSA)

e-ISSN: 1989-8886     ISSN: 1257-5011