Patterns of calcium channel (TRPV6) expression in rabbit gut epithelium

Authors

  • Rajesh Ranjan West Bengal University of Animal and Fishery Sciences
  • Partha Das West Bengal University of Animal and Fishery Sciences
  • Subhashish Batabyal West Bengal University of Animal and Fishery Sciences
  • Arpana Priyanka Minj West Bengal University of Animal and Fishery Sciences

DOI:

https://doi.org/10.4995/wrs.2020.12161

Keywords:

rabbit, gut epithelium, TRPV6, immunohistochemistry, RT-PCR

Abstract

The present study was undertaken to explore the immunohistochemical localisation of TRPV6 calcium channels in rabbit gut epithelium that are actively involved in calcium absorption. To undertake the research, twelve apparently healthy adult female rabbits with a body weight between 1.0 to 1.5 kg were procured, acclimatised and divided into two groups: control and test. Both groups were kept on same feed along with exogenous calcium supplementation in test group animals only. The serum calcium level revealed that normally a high value of serum calcium is maintained in the rabbit as compared to other mammals, thus indicating that the homeostatic mechanism might be poorly developed. Immunohistochemistry and reverse transcription polymerase chain reaction analysis revealed that the caecum was the site of maximum calcium absorption in rabbit, followed by the duodenum and jejunum. The expression pattern of TRPV6 protein/mRNA was weaker in test group animals than in the control group, indicating that the channel was functional in low calcium concentration in the gut.

Downloads

Download data is not yet available.

Author Biographies

Rajesh Ranjan, West Bengal University of Animal and Fishery Sciences

Assistant Professor

Department of Veterinary Anatomy, Faculty of Veterinary and Animal Sciences

Partha Das, West Bengal University of Animal and Fishery Sciences

Department of Veterinary Anatomy, Faculty of Veterinary and Animal Sciences

Subhashish Batabyal, West Bengal University of Animal and Fishery Sciences

Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences

Arpana Priyanka Minj, West Bengal University of Animal and Fishery Sciences

Department of Veterinary Anatomy, Faculty of Veterinary and Animal Sciences

References

Agkϋn S., Rudman D. 1969. Relationships between mobilization of free fatty acids from adipose tissue and the concentrations of calcium in the extracellular fluid and in the tissue. Endocrinology, 84: 926-930. https://doi.org/10.1210/endo-84-4-926

Barlet J.P. 1980. Plasma calcium, inorganic phosphorus and magnesium levels in pregnant and lactating rabbits. Reprod. Nutr. Develop. 20: 647-651. https://doi.org/10.1051/rnd:19800406

Boos A., Riner K., Hassig M., Liesegang A. 2007. Immunohistochemical demonstration of Vitamin D receptor distribution in goat intestines. Cells Tissues Organs. 186: 121-128. https://doi.org/10.1159/000102540

Brandenburger M. 2004. Verlauf der postnatal en Entwicklung des Vitamin D-abhängigen Ca2+Transportesim Dünndarm von Ferkeln. Master’s thesis, Hannover School of Veterinary Medicine, Germany.

Breves G., Kock J., Schröder B. 2007. Transport of nutrients and electrolytes across the intestinal wall in pigs. Livest. Sci., 109: 4-13. https://doi.org/10.1016/j.livsci.2007.01.021

Bronner F., Pansu D. 1999. Nutritional aspects of calcium absorption. J. Nutr., 129: 9-12. https://doi.org/10.1093/jn/129.1.9

Chapin R.E., Smith S.E. 1967. Calcium requirement of growing rabbits. J. Ani. Sci., 26: 67-71. https://doi.org/10.2527/jas1967.26167x

Cheeke R.C. 1987. Mineral nutrition of Rabbits. Chap. 8 in: Rabbit feeding and Nutrition, Academic press Inc. Orlando, Florida, pp. 21-30, 106-111. https://doi.org/10.1016/B978-0-08-057078-5.50013-3

Dekker E.S., Hoenderop J.G., Nilius B., Bindels R.J.M. 2003. The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium. 33: 497-507. https://doi.org/10.1016/S0143-4160(03)00065-4

Eckermann-Ross C. 2008. Hormonal regulation and calcium metabolism in the rabbit. Vet. Clin. North Am. Exot. Anim. Pract., 11: 139-152. https://doi.org/10.1016/j.cvex.2007.09.002

Hoenderop J.G., Hartog A., Stuiver M., Doucet A., Willems P.H., Bindels R.J. 2000. Localization of the epithelial Ca2+channel in rabbit kidney and intestine. J. Am. Soc. Nephrol., 11: 1171-1178.

Hoenderop J.G., Nilius B., Bindels R.J.M. 2005. Calcium absorption across epithelia. Physiol. Rev., 85: 373-422. https://doi.org/10.1152/physrev.00003.2004

Kovalevskaya N.V., Schilderink N., Vuister G.W. 2011. Expression and purification of the C-terminal fragments of TRPV5/6 channels. Protein Expression and Purification. 80: 28-33. https://doi.org/10.1016/j.pep.2011.05.021

Liesegang A., Singer K., Boos A. 2008. Vitamin D receptor amounts across different segments of the gastrointestinal tract in Brown Swiss and Holstein Frisian cows of different age. J. Anim. Physiol. Anim. Nutr., 92: 316-323. https://doi.org/10.1111/j.1439-0396.2007.00782.x

Luna L.G. 1968. In: Manual of histological staining methods of Armed Forces Institute of Pathology. 3rdedn., McGraw Hill Book Company, New York, USA, pp. 38 -196.

Riner K., Boos A., Hässig M., Liesegang A. 2008. Vitamin D receptor distribution in intestines of domesticated sheep Ovis ammon f. aries. J. Morphol., 269:144-152. https://doi.org/10.1002/jmor.10574

SIDS. 2002. Screening Information Datasheet on initial assessment report for Calcium chloride. UNEP publication, Japan. pp. 1-154.

Sprekeler N., Müller T., Kowalewski M.P., Liesegang A., Boos A. 2011. Expression patterns of intestinal calcium transport factors and ex-vivo absorption of calcium in horses. BMC Vet. Res., 7: 65-76. https://doi.org/10.1186/1746-6148-7-65

Van Abel M., Hoenderop J.G., Van der Kemp A.W., Van Leeuwen J.P., Bindels R.J. 2003. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am. J. Physiol. Gastrointest. Liver. Physiol., 285: 78-85. https://doi.org/10.1152/ajpgi.00036.2003

Wilkens M.R., Kunert-Keil C., Brinkmeier H., Schröder, B. 2009. Expression of calcium channel TRPV6 in ovine epithelial tissue. Vet. J., 182: 294-300. https://doi.org/10.1016/j.tvjl.2008.06.020

Downloads

Published

2020-12-30

Issue

Section

Pathology