Polymorphisms in coding and non-coding regions of rabbit (Oryctolagus cuniculus) myogenin (MyoG) gene





rabbits, myogenin, single nucleotide polymorphism, growth traits, slaughter traits


In animal breeding, selection based on growth is very often used, as this trait affects the profitability of animal production. Identification of  polymorphisms within the genes affecting the growth process seems to be very important. Therefore, we decided to analyse rabbit myogenin (MyoG gene) for potential polymorphic sites and their association with growth and carcass traits in Termond White (TER), Belgian Giant Grey (BGG) and crossbred New Zealand White×Belgian Giant Grey (NZW×BGG) rabbits. We found three single nucleotide polymorphisms (SNPs) – in 5’ upstream sequence g.68679476 C>T, in exon 1 – silent mutation g.68680096 T>C and g.68680097 G>A resulting in change of GTG triplet (valine) into ATG triplet (methionine). Association analysis showed that GG genotype weaning weight was statistically higher compared to GA in TER population (P=0.005), and that the hind parts for GG genotypes were heavier compared to those of GA (P=0.024), but association analysis of dissectible parts showed this was caused by higher bone weight (P=0.015). For g.68679476 C>T in NZW×BGG population, the CC genotypes for fore (678±35) and hind part (615±29) weights were heavier compared to CT (588±16 and 549±13, respectively); moreover, association analysis of dissectible parts showed that weight of dissectible meat in hind part. Unfortunately, we did not find similar associations for other analysed breeds. For g.68679476 C>T in NZWxBGG musculus longissimus lumborum pH leg after 24 h chilling (pH24L) were statistically lower for CC genotypes compared to CT (P=0.027). For g.68680097 G>A in Termond White population L* value on the hind leg after 24 h chilling (L*24H) was higher for GA genotypes compared to GG (P=0.03), while for g.68679476 C>T for musculus longissimus lumborum L* value after 24 h (L*24L) CC genotypes had higher value compared to CT (P=0.016) in BGG population. Moreover, in BGG population CT genotypes had higher weaning weight compared to CC (P=0.018). Our results show that SNPs within the MyoG gene may influence growth traits in some rabbit breeds, but the evolutionary conserved sequence may not be favourable for changes within coding sequences. For a better understanding thereof, additional analysis is required.


Download data is not yet available.

Author Biographies

Łukasz Migdał, University of Agriculture in Kraków

Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences

Sylwia Pałka, University of Agriculture in Kraków

Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences


Abu El-Magd M., Abo-Al-Ela G.H., El-Nahas A., Mansour A.A. 2015. SNPs of the MyoD and MyoG genes and their association with growth traits in Egyptian water buffalo (Bubalus bubalis). Indian J. Appl. Res., 3: 34-40. https://doi.org/10.15373/2249555X/DEC2013/178

Anton I., Fésüs L., Zsolnai A. 2002. Simultaneous identification of two MspI polymorphisms of the porcine myogenin gene in Hungarian breeds. J. Anim. Breed. Genet., 119: 280-283. https://doi.org/10.1046/j.1439-0388.2002.00343.x

Anton I., Zsolnai A., Komlósi I., Király A., Fésüs L. 2006. Effect of MYOG genotypes on growth rate and production traits in Hungarian large white pigs. Acta Vet. Hung., 54: 393-397. https://doi.org/10.1556/AVet.54.2006.3.9

Bhuiyan M.S.A., Kim N.K., Cho Y.M., Yoon D., Kim K.S., Jeon J.T., Lee J.H. 2009. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Prod. Sci., 126: 292-297. https://doi.org/10.1016/j.livsci.2009.05.019

Blasco A., Nagy I., Hernández P. 2018. Genetics of growth, carcass and meat quality in rabbits. Meat Sci., 148: 178-185. https://doi.org/10.1016/j.meatsci.2018.06.030

Bolet G., Brun J.M., Monnerot M., Abeni F., Arnal C., Arnold J., Bell D., Bergoglio G., Besenfelder U., Bosze S., Boucher S., Chanteloup N., Ducourouble M.C., Durand-Tardif M., Esteves P.J., Ferrand N., Gautier A., Haas C., Hewitt G., Jehl N., Joly T., Koehl P.F., Laube T., Lechevestrier S., Lopez M., Masoero G., Menigoz J.J., Piccinin R., Queney G., Saleil G., Surridge A., van der Loo W., Vicente J.S., Viudes de Castro M.P., Virag J.S., Zimmermann J.M. 2000. Evaluation and conservation of European rabbit (Oryctolagus cuniculus) genetic resources. First results and inferences (Main paper). In Proc: 7th World Rabbit Congress, 4-7 July, 2000. Valencia, Spain. Vol A: 281-315.

Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Martinez Barrio A., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel-Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong, A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand, N., Lindblad-Toh K., Andersson L. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Sci. J., 345: 1074-1079. https://doi.org/10.1126/science.1253714

Dalle Zotte A., Cullere M., Rémignon H., Alberghini L., Paci G. 2016. Meat physical quality and muscle fibre properties of rabbit meat as affected by the sire breed, season, parity order and gender in an organic production system. World Rabbit Sci., 24: 145-154. https://doi.org/10.4995/wrs.2016.4300

Hasty P., Bradley A., Morris J.H., Edmondson D.G., Venuti J.M., Olson E.N., Klein W.H. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364: 501-506. https://doi.org/10.1038/364501a0

Kuang L., Xie X., Zhang X., Lei M., Li C., Ren Y., Zheng J., Guo Z., Zhang C., Yang C., Zheng Y. 2014. Expression profiles of myostatin, myogenin, and myosin heavy chain in skeletal muscles of two rabbit breeds differing in growth rate. Anim. Biotechnol., 25: 223-233. https://doi.org/10.1080/10495398.2013.865639

Kapelanski W., Grajewska S., Kuryl J., Boclan M., Wyszynska-Koko J., Urbanski P. 2005. Polymorphism in coding and non coding regions of the MYOD gene family and meat quality in pigs. Fol. Biol., 53: 45-49. https://doi.org/10.3409/173491605775789506

Kim J.M., Choi B.D., Kim B.C., ParkS.S., Hong K.C. 2009. Associations of the variation in the porcine myogenin gene with muscle ï¬bre characteristics, lean meat production and meat quality traits. J. Anim. Breed. Genet., 126: 134-141. https://doi.org/10.1111/j.1439-0388.2008.00724.x

Kozioł K., Maj D., Bieniek J. 2015. Changes in the colour and pH of rabbit meatin the aging process. Med. Weter., 71: 104-108.

Mattioli S., Martino M., Ruggeri S., Roscini V., Moscati L., Dal Bosco A., Castellini C. 2016. Fattening rabbits in mobile arks: effect of housing system on in vivo oxidative status and meat quality. World Rabbit Sci., 24: 303-311. https://doi.org/10.4995/wrs.2016.4108

Olson E.N. 1993. Regulation of muscle transcription by the MyoD family. The heart of the matter. Circ Res., 72: 1-6. https://doi.org/10.1161/01.RES.72.1.1

Olson E.N., Klein W.H. 1994. HLH factors in muscle development: Dead lines and commitments, what to leave in and what to leave out. Genes Dev., 8: 1-8. https://doi.org/10.1101/gad.8.1.1

Pałka S., Siudak Z., Kmiecik M., Kozioł K., Migdał Ł., Bieniek J. 2018. Królik belgijski olbrzym – charakterystyka rasy. Przegląd Hodowlany, 2: 31-33 [In Polish].

Przybylski W., Hopkins D. 2016. Meat Quality Genetics and Environmental Factors. CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19250

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197

te Pas M.F., Verburg F.J., Gerritsen C.L., de Greef K.H. 2000. Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77. https://doi.org/10.2527/2000.78169x

Ramírez J.A., Oliver M.A., Pla M., Guerrero L., Arino B., Blasco A., Pascual M., Gil M. 2004. Effects of selection for growth rate on biochemical quality and texture characteristics of meat from rabbits. Meat Sci., 67: 617-624. https://doi.org/10.1016/j.meatsci.2003.12.012

Soumillion A., Erkens J.H., Lenstra J.A., Rettenberger G., te Pas M.F. 1997. Genetic variation in the porcine myogenin gene locus. Mamm. Genome, 8: 564-568. https://doi.org/10.1007/s003359900504

SAS (2014). SAS/STAT 13.2 User’s Guide. SAS Institute Inc. Cary, NC.

Sun Y., Han Y. 2017. Genetic polymorphisms of myogenin gene and their associations with growth traits in the Chinese Tibetan Sheep. Kafkas Univ. Vet. Fak. Derg., 23: 253-258. https://doi.org/10.9775/kvfd.2016.16371

Tang H., Thomas P.D. 2016. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics, 32: 2230-2232. https://doi.org/10.1093/bioinformatics/btw222

Tseng B.S., Cavin S.T., Hoffman E.P., Iannaccone S.T., Mancias P., Booth F.W., Butler I.J. 1999. Human bHLH Transcription Factor GeneMyogenin (MYOG): Genomic Sequence and Negative Mutation Analysisin Patients with Severe Congenital Myopathies. Genomics, 57: 419-423. https://doi.org/10.1006/geno.1998.5719

Wei Y., Zhang G.X., Zhang T., Wang J.Y., Fan Q.C., Tang Y., Ding F.X., Zhang L. 2016. Myf5 and MyoG gene SNPs associated with Bian chicken growth trait. Genet. Mol. Res., 15: 15037043. https://doi.org/10.4238/gmr.15037043

Xue M., Zan L.S., Gao L., Wang H.B. 2011. A novel polymorphism of the myogenin gene is associated with body measurement traits in native Chinese breeds. Genet. Mol. Res., 10: 2721-2728. https://doi.org/10.4238/2011.November.4.6

Vaser R., Adusumalli S., Leng S., Sikic M., Ng P.C. 2016. SIFT missense predictions for genomes. Nat. Protoc., 11: 1-9. https://doi.org/10.1038/nprot.2015.123