The influence of porcine prophenin on neutrophils isolated from rabbit blood during implantation of calcium sulphate graft material into bone tissue

Joanna Wessely-Szponder, Ryszard Bobowiec, Tomasz Szponder

Abstract

Immune dysfunction induced by surgical trauma may comprise either an inappropriately exaggerated inflammatory response or a profound suppression of cell- mediated immunity. Neutrophils are the leading cells in the first response to trauma. It is known that they mediate initial resistance to bacterial infection. Activated neutrophils can degranulate and release some enzymes such as elastase and myeloperoxidase (MPO). The function of elastase is, among others, to kill bacterial, whereas MPO is a specific enzyme of primary granules of neutrophils and a marker of in vivo neutrophil activation. Previous reports estimated that some cathelicidins could act to increase or diminish an innate immune response in which neutrophils participate. The aim of this study was to evaluate prophenins (PF) isolated from porcine leukocytes in respect to neutrophil activity and survival during implantation of calcium sulphate bone grafts substitution in rabbits. Obtained results pointed out that neutrophils responded to  PF  depending upon concentration. Thirty min from implantation of calcium sulphate graft, we observed the greatest release of elastase (57.01±0.49% of maximal release) in cultures stimulated with 10 mg/ml of PF, at 0 mg/ml was 51.15±0.23%, while after 24 h of incubation the greatest response was at a concentration of 20 mg/ml.  MPO release after 30 min from surgery decreased significantly at 10 mg/ml. In higher concentrations, the inhibition was less pronounced. Moreover, we estimated that PF causes cytotoxicity in the highest concentration as well as the apoptosis of neutrophils.


Keywords

Neutrophil; antimicrobial peptides; cathelicidin; prophenin

Full Text:

PDF

References

Aarbiou J., Tjabringa G.S., Verhoosel R.M., Ninaber D.K., White S.R., Peltenburg L.T.C., Rabe K.F., Hiemstra P.S. 2006. Mechanism of cell death induced by neutrophil antimicrobial peptides α-defensins and LL-37. Inflamm. Res., 55: 119-127. https://doi.org/10.1007/s00011-005-0062-9

Alalwani S., Sierigk J., Herr C., Pinkenburg O., Gallo R., Vogelmeier C., Bals R. 2010. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur. J. Immunol., 40: 1118-1126. https://doi.org/10.1002/eji.200939275

Barlow P.G., Li Y., Wilkinson T.S., Bowdish D., Lau Y.E., Cosseau C., Hanslett C., Simpson A.J., Hancock R., Davidson D. 2006. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J. Leukoc. Biol. 80: 509-520. https://doi.org/10.1189/jlb.1005560

Borregaard N. 2010. Neutrophils, from marrow to microbes. Immunity, 33: 657-670. https://doi.org/10.1016/j.immuni.2010.11.011

Bowdish D, Davidson D., Scott M., Hancock R. 2005. Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Chem., 49: 1727-1732. https://doi.org/10.1128/AAC.49.5.1727-1732.2005

Chou T., Petti C., Szakacs J., Bloebaum R. 2010. Evaluating antimicrobials and implant materials for infection prevention around transcutaneous osseointegrated implants in a rabbit model. J. Biomed. Mater. Res., 92A: 942-952. https://doi.org/10.1002/jbm.a.32413

Chung R., Cool J., Scherer M., Foster B., Xian C. 2006. Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J. Leukoc. Biol., 80: 1272-1280. https://doi.org/10.1189/jlb.0606365

Damiano V., Kucich U., Murer E., Laudenslager N., Weinbaum G. 1988. Ultrastructural quantitation of peroxidase- and elastase-containing granules in human neutrophils. AJP 131: 235-245.

Eckle I., Kolb G., Heiser C., Havemann K. 1990. Stimulation of neutrophil elastase and myeloperoxidase release by IgG fragments. Clin. Exp. Immunol., 81: 352-356. https://doi.org/10.1111/j.1365-2249.1990.tb03344.x

Elferink J., Deierkauf M. 1987. A biochemical study of hydroxyapatite crystal induced enzyme release from neutrophils. Annals Rheum. Dis., 46: 590-597. https://doi.org/10.1136/ard.46.8.590

Faurschou M., Borregaard N. 2003. Neutrophil granules and secretory vesicles in inflammation. Microbes Infec., 5: 1317-1327. https://doi.org/10.1016/j.micinf.2003.09.008

Franz S., Rammelt S., Scharnweber D., Simon J. 2011. Immune responses to implants-A review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 32: 6692-6709. https://doi.org/10.1016/j.biomaterials.2011.05.078

Hans P., Canivet J-L., Muller J-P., Byttebier G., Lamy M. 1991. Plasma vitamin E, total lipids and myeloperoxidase levels during spinal surgery. A comparison between two anaesthetic agents: propofol and isoflurane. Acta Anaesthesiol. Scand., 35: 302-305. https://doi.org/10.1111/j.1399-6576.1991.tb03294.x

Kakuta Y., Aoshiba K., Nagai A. 2006. C-Reactive protein products generated by neutrophil elastase promote neutrophil apoptosis. Arch. Med. Res, 37: 456-460. https://doi.org/10.1016/j.arcmed.2005.10.010

Kaveh K., Ibrahim R., Bakar M., Ibrahim T. 2010. Bone grafting and bone graft substitutes. J Anim. Vet. Adv., 9: 1055-1067. https://doi.org/10.3923/javaa.2010.1055.1067

Kokryakov V.N., Hartwig, S., Panyutich, EA. et al. 1993. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins FEBS. 372: 231-236. https://doi.org/10.1016/0014-5793(93)80175-T

Lee G., Khoury J., Bell J-E., Buckwalter J. 2002. Adverse reactions to osteoset bone graft substitute. Iowa Orthop. J. 22: 35-38

Lenz A., Franklin G.A., Cheadle W.G. 2007. Systemic inflammation after trauma. Injury Int. J. Care Injured, 38: 1336-1345. https://doi.org/10.1016/j.injury.2007.10.003

Matos M., Araujo F., Paixao F. 2008. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J. Orthop. Surg. Res. 3:4. doi:10.1186/1749-799X-3-4. https://doi.org/10.1186/1749-799X-3-4

McPhee, J.B., Hancock, R.E.W. 2005. Function and therapeutic potential of host defence peptides. J. Pep. Sci.11: 677-687. https://doi.org/10.1002/psc.704

Mountziaris P., Mikos A. 2008. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering: Part B, 14:179-186. https://doi.org/10.1089/ten.teb.2008.0038

Nystrom L., Raw R. Buckwalter J. Morcuende J. 2008. Acute intraoperative reactions during the injection of calcium sulfate bone cement for the treatment of unicameral bone cysts:A review of four cases. Iowa Orthop. J.,28: 81-84.

Orsini G., Ricci J., Scarano A., Pecora G., Iezzi G., Piattelli A. 2004. Bone-Defect healing with calcium-sulfate particles and cement: an experimental study in rabbits. J. Biomed. Mater. Res. Part B: App. Biomater. 68B: 199-208. https://doi.org/10.1002/jbm.b.20012

Papayannopoulos V., Metzler K., Hakkim A., Zychlinsky A. 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol., 191: 677-691. https://doi.org/10.1083/jcb.201006052

Robinson D., Sandbank J., Farber R., Halperin N. 1999. Inflammatory reactions associated with a calcium sulphate bone substitute. Ann. Transplant., 4: 91-7.

Savill J. and Haslett C.1995. Granulocyte clearance by apoptosis in the resolution of inflammation. Cell Biol., 6:385-393.

Stallmann H.P., Faber Ch., Bronckers A., Amerongen A., Wuisman P. 2004. Osteomyelitis prevention in rabbits using antimicrobial peptide hLF1-11 or gentamicin-containing calcium phosphate cement. J. Antimicrob. Chemiother., 54: 472-476. https://doi.org/10.1093/jac/dkh346

Velard F., Lurent-Maquin D., Guillaume C., Bouthors S., Jallot E., Nedec J-M., Belaaouaj A., Laquerriere P. 2009. Polymorphonuclear neutrophil response to hydroxyapatite particles, implication in acute inflmmatory reaction. Acta Biomaterialia, 5: 1708-1715. https://doi.org/10.1016/j.actbio.2009.01.008

Wessely-Szponder J. 2008. The influence of TNF and IL-8 on secretory action of neutrophils isolated from heifers in the course of BRD. Acta Vet. Hung., 56: 187-196. https://doi.org/10.1556/avet.56.2008.2.6

Wessely-Szponder J., Majer-Dziedzic B., Smolira A. 2010. Analysis of antimicrobial peptides from porcine neutrophils. J. Microbiol. Methods, 83: 8-12. https://doi.org/10.1016/j.mimet.2010.07.010

Zang, G., Ross, R., Blecha, F. 2000. Porcine antimicrobial peptides: New prospects for ancient molecules of host defence. Vet. Res. 31: 277-296. https://doi.org/10.1051/vetres:2000121

Zhou Z.Q., Yu Y.Q., Feng S.W., Yu M., Liu H.J. Yang J.J. 2007. Ketamine inhibits polymorphonuclear leucocyte CD11b expression and respiratory burst activity in endotoxemic rats. Inflamm. Res., 56: 149-153. https://doi.org/10.1007/s00011-006-6090-2

Abstract Views

916
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Different activation of monocyte-derived macrophages by antimicrobial peptides at a titanium tibial implantation in rabbits
Joanna Wessely-Szponder, Tomasz Szponder, Ryszard Bobowiec
Research in Veterinary Science  vol: 115  first page: 201  year: 2017  
doi: 10.1016/j.rvsc.2017.05.003



 

 Universitat Politècnica de València

 

Official journal of the World Rabbit Science Association (WRSA)

 

e-ISSN: 1989-8886     ISSN: 1257-5011   https://doi.org/10.4995/wrs