Hair cortisol levels determined at different body sites in the New Zealand White rabbit

Authors

  • Antonella Comin University of Udine
  • Valentina Zufferli University of Udine
  • Tanja Peric University of Udine
  • Federico Canavese Hôpital Estaing
  • Davide Barbetta University of Trieste
  • Alberto Prandi University of Udine

DOI:

https://doi.org/10.4995/wrs.2012.1106

Keywords:

rabbit, hair, cortisol

Abstract

This study was designed to determine hair cortisol levels in the New Zealand White (NZW) rabbit and to examine possible differences in the cortisol levels of hair samples collected from different body regions in stable environmental conditions. The experiment was performed on eight 18 month-old female NZW rabbits. All animals were shaved to collect hair samples from 26 different body regions. Hair cortisol levels were determined by the RIA method. The mean hair cortisol concentration for the 26 samples in the 8 animals was 2.12±0.05 pg/mg (mean±standard error). This study reveals individual hair cortisol distributions in the 8 animals (P<0.001) and no statistical differences (P>0.05) in hair cortisol levels among the different body sites in each of the animals.

Downloads

Download data is not yet available.

Author Biographies

Antonella Comin, University of Udine

Department of Food Science

Valentina Zufferli, University of Udine

Department of Food Science

Tanja Peric, University of Udine

Department of Food Science

Davide Barbetta, University of Trieste

CSPA, Settore Stabulario Sperimentazione Animale

Alberto Prandi, University of Udine

Department of Food Science

References

Accorsi P.A., Carloni E., Valsecchi P., Viggiani R., Gamberoni M., Tamanini C., Seren E. 2008. Cortisol determination in hair and faeces from domestic cats and dogs. Gen. Comp. Endocrinol., 155(2): 398-402. https://doi.org/10.1016/j.ygcen.2007.07.002

Balikova M. 2005. Hair analysis for drugs of abuse. Plausibility of interpretation. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 149: 199-207. https://doi.org/10.5507/bp.2005.026

Boiti C. 2004. Underlying physiological mechanisms controlling the reproductive axis of rabbit does. Proceedings - 8th World Rabbit Congress - September 7-10, 2004 - Puebla, Mexico: 186-206.

Cabezas S., Blas J., Marchant T.A., Moreno S. 2007. Physiological stress levels predict survival probabilities in wild rabbits. Horm. Behav., 51: 313-320. https://doi.org/10.1016/j.yhbeh.2006.11.004

Comin A., Prandi A., Peric T., Corazzin M., Dovier S., Bovolenta S. 2011. Hair cortisol levels in dairy cows from winter housing to summer highland grazing. Livestock Science, 138: 69-73. https://doi.org/10.1016/j.livsci.2010.12.009

Davenport M.D., Tiefenbacher S., Lutz C.K., Novak M.A., Meyer J.S. 2006. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol., 147: 255-261. https://doi.org/10.1016/j.ygcen.2006.01.005

de Prada T.P., Pozzi A.O., Coronado M.T., Pounchard M.A., Gonzalez P., Boscà L., Fantidis P. 2007. Atherogenesis takes place in cholesterol-fed rabbits when circulating concentrations of endogenous cortisol are increased and inflammation suppressed. Atherosclerosis, 191: 333-339. https://doi.org/10.1016/j.atherosclerosis.2006.05.049

del Rosario González-de-la-Vara M., Valdez R.A., Lemus-Ramirez V., Vázquez-Chagoyán J.C., Villa-Godoy A., Romano M.C. 2011. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle. Can. J. Vet. Res., 75: 216-221.

Daniel W.W. 1978. Applied Nonparametric Statistics. Houghton Mifflin Company, Boston, USA.

DeRijk R.H., Schaaf M., de Kloet E.R. 2002. Glucocorticoid receptor variants: clinical implications. J. Steroid Biochem. Mol. Biol., 81: 103-22. https://doi.org/10.1016/S0960-0760(02)00062-6

Désautés C., Bidanelt J.P., Milant D., Iannuccelli N., Amigues Y., Bourgeois F., Caritez J.C., Renard C., Chevalet C., Mormède P. 2002. Genetic linkage mapping of quantitative trait loci for behavioral and neuroendocrine stress response traits in pigs. J. Anim. Sci., 80: 2276-85. https://doi.org/10.1093/ansci/80.9.2276

Dytham C. 2003. Choosing and Using Statistics: A Biologist's Guide (2nd ed.). Blackwell, Malden, MA, USA.

Gygax L., Neuffer I., Kaufmann C., Hauser R., Wechsler B. 2006. Milk cortisol concentration in automatic milking systems compared with auto-tandem milking parlors. J. Dairy Sci., 89: 3447-3454. https://doi.org/10.3168/jds.S0022-0302(06)72382-7

Inglis G.C., Ingram M.C., Holloway C.D., Swan L., Birnie D., Hillis W.S., Davies E., Fraser R., Connell J.M. 1999. Familial pattern of corticosteroids and their metabolism in adult human subjects-the Scottish adult twin study. J. Clin. Endocr. Metab., 84: 4132-7. https://doi.org/10.1210/jc.84.11.4132

Kalra S., Einarson A., Karaskov T., Van Uum S., Koren G. 2007. The relationship between stress and hair cortisol in healthy pregnant women. Clin. Invest. Med., 30: E103-E107. https://doi.org/10.25011/cim.v30i2.986

Kirschbaum C., Tietze A., Skoluda N., Dettenborn L. 2009. Hair as a retrospective calendar of cortisol production-Increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinol., 34: 32-37. https://doi.org/10.1016/j.psyneuen.2008.08.024

Koren L., Mokady O., Karaskov T., Klein J., Koren G., Gleffen E. 2002. A novel method using hair for determining hormonal levels in wildlife. Anim. Behav., 63: 403-406. https://doi.org/10.1006/anbe.2001.1907

Linkowski P., van Onderbergen A., Kerkhofs M., Bosson D., Mendlewicz J., van Cauter E. 1993. Twin study of the 24-h cortisol profile: evidence for genetic control of the human circadian clock. Am. J. Physiol., 264: E173-81. https://doi.org/10.1152/ajpendo.1993.264.2.E173

Mormède P., Andanson S., Aupérin B., Beerda B., Guémené D., Malmkvist J., Manteca X., Manteuffel G., Prunet P., van Reenen C.G., Richard S., Veissier I. 2007. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav., 92(3): 317-39. https://doi.org/10.1016/j.physbeh.2006.12.003

Negrao J.A., Porcionato M.A., de Passille A.M., Rushen J. 2004. Cortisol in saliva and plasma of cattle after ACTH administration and milking. J. Dairy Sci., 87: 1713-1718. https://doi.org/10.3168/jds.S0022-0302(04)73324-X

Pragst F., Balikova M.A. 2006. State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta, 370: 17-49. https://doi.org/10.1016/j.cca.2006.02.019

Raul J.S., Cirimele V., Ludes B., Kintz P. 2004. Detection of physiological concentrations of cortisol and cortisone in human hair. Clin. Biochem., 37: 1105-1111. https://doi.org/10.1016/j.clinbiochem.2004.02.010

Sauvé B., Koren G., Walsh G., Tokmakejian S., Van Uum S.H. 2007. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Invest. Med., 30(5): E183-91. https://doi.org/10.25011/cim.v30i5.2894

Sevi A. 2009. Animal-based measures for welfare assessment. Ital. J. Anim. Sci., 8(2): 897-899. https://doi.org/10.4081/ijas.2009.s2.904

Steudte S., Stalder T., Dettenborn L., Klumbies E., Foley P., Beesdo-Baum K., Kirschbaum C. 2011. Decreased hair cortisol concentrations in generalised anxiety disorder. Psychiatry Res., 186: 310-314. https://doi.org/10.1016/j.psychres.2010.09.002

Szeto A., Gonzales J.A., Spitzer S.B., Levine J.E., Zaias J., Saab P.G., Schneiderman N., McCabe P.M. 2004. Circulating levels of glucocorticoid hormones in WHHL and NZW rabbits: circadian cycle and response to repeated social encounter. Psychoneuroendocrinol., 29: 861-866. https://doi.org/10.1016/S0306-4530(03)00153-7

Walker D.J., Elliott J., Syme H.M. 2009. Urinary cortisol/cortisone ratios in hypertensive and normotensive cats. J. Feline Med. Surg., 11: 442-448. https://doi.org/10.1016/j.jfms.2008.10.004

Yamada J., Stevens B., de Silva N., Gibbins S., Beyene J., Taddio A., Newman C., Koren G. 2007. Hair cortisol as a potential biologic marker of chronic stress in hospitalised neonates. Neonatology, 92: 42-49. https://doi.org/10.1159/000100085

Downloads

Issue

Section

Papers