Identification and analysis of single nucleotide polymorphisms in the myosin VA (MYO5A) gene and its exclusion as the causative gene of the dilute coat colour locus in rabbit
DOI:
https://doi.org/10.4995/wrs.2012.1033Keywords:
Candidate gene, Coat colour, dilute locus, MYO5A, SNPAbstract
Classical genetic studies have identified different coat colour loci in rabbit and comparative analyses have established corresponding loci across species. In particular, the rabbit dilute locus is determined by a recessive coat colour mutation that modifies the basic colours influenced by the agouti and extension mutations. In mice, similar phenotypic effects are determined by a similarly named locus. This locus encodes the myosin VA (Myo5a) gene, whose protein product is an unconventional myosin that plays an essential role in melanosome transport in the melanocytes. We selected the same gene as a strong candidate for explaining the dilute coat colour in rabbit. To this end, 1399 bp were re-sequenced, spanning 4 exons out of 41 exons and a portion of intronic regions of the rabbit MYO5A gene to identify polymorphisms that could be useful to confirm or exclude this gene as causative of the rabbit dilute locus. Nine polymorphisms were identified, one of which was used to follow the segregation of the blue and black colours in a Checkered Giant F1 family. The single nucleotide polymorphism (SNP) analysed did not co-segregate with the two colours. These results excluded the MYO5A gene as determinant of the dilute locus in rabbit. The two alleles of this SNP were also present in several other breeds with different coat colours, further indicating that this marker is not associated with the dilute mutation in rabbits. Other candidates should be investigated to identify the causative gene of this locus in rabbit.
Downloads
References
Aigner B., Besenfelder U., Müller M., Brem G. 2000. Tyrosinase gene variants in different rabbit strains. Mamm. Genome, 11: 700-702. https://doi.org/10.1007/s003350010120
Barral D.C., Seabra M.C. 2004. The melanosome as a model to study organelle motility in mammals. Pigment Cell Res., 17: 111-118. https://doi.org/10.1111/j.1600-0749.2004.00138.x
Brooks S.A., Gabreski N., Miller D., Brisbin A., Brown H.E., Streeter C., Mezey J., Cook D., Antczak D.F. 2010. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet., 6: e1000909. https://doi.org/10.1371/journal.pgen.1000909
Bultman S.J., Michaud E.J., Woychik R.P. 1992. Molecular characterization of the mouse agouti locus. Cell, 71: 1195-1204. https://doi.org/10.1016/S0092-8674(05)80067-4
Castle W.E. 1930. The Genetics of Domestic Rabbit. Cambridge Harvard University Press, London.
Fontanesi L., Forestier L., Allain D., Scotti E., Beretti F., Deretz-Picoulet S., Pecchioli E., Vernesi C., Robinson T.J., Malaney J.L., Russo V., Oulmouden A. 2010a. Characterization of the rabbit agouti signaling protein (ASIP) gene: Transcripts and phylogenetic analyses and identification of the causative mutation of the nonagouti black coat colour. Genomics, 95: 166-175. https://doi.org/10.1016/j.ygeno.2009.11.003
Fontanesi L., Scotti E., Colombo M., Beretti F., Forestier L., Dall'Olio S., Deretz S., Russo V., Allain D., Oulmouden A. 2010b. A composite six bp in-frame deletion in the melanocortin 1 receptor (MC1R) gene is associated with the Japanese brindling coat colour in rabbits (Oryctolagus cuniculus). BMC Genet., 11: 59. https://doi.org/10.1186/1471-2156-11-59
Fontanesi L., Tazzoli M., Beretti F., Russo V. 2006. Mutations in the melanocortin 1 receptor (MC1R) gene are associated with coat colours in the domestic rabbit (Oryctolagus cuniculus). Anim. Genet., 37: 489-493. https://doi.org/10.1111/j.1365-2052.2006.01494.x
Fontanesi L., Tazzoli M., Russo V. 2007. Non-invasive and simple methods for sampling DNA for PCR analysis of melanocortin 1 receptor (MC1R) gene mutations: a technical note. World Rabbit Sci., 15: 121-126. https://doi.org/10.4995/wrs.2007.598
Fox R.R. 1994. Taxonomy and Genetics, In: Manning P.J., Ringler, D.H., Newcomer C.E. (eds), The Biology of the Laboratory Rabbit. Second edition, Academic Press, San Diego, CA, 1-26.
Futaki S., Takagishi Y., Hayashi Y., Ohmori S., Kanou Y., Inouye M., Oda S., Seo H., Iwaikawa Y., Murata Y. 2000. Identification of a novel myosin-Va mutation in an ataxic mutant rat, dilute-opisthotonus. Mamm. Genome, 11: 649-655. https://doi.org/10.1007/s003350010121
Huang J.D., Cope M.J., Mermall V., Strobel M.C., Kendrick-Jones J., Russell L.B., Mooseker M.S., Copeland N.G., Jenkins N.A. 1998. Molecular genetic dissection of mouse unconventional myosin-VA: head region mutations. Genetics, 148: 1951-1961.
Huang J.D., Mermall V., Strobel M.C., Russell L.B., Mooseker M.S., Copeland N.G., Jenkins N.A. 1998. Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations. Genetics, 148: 1963-1972.
Lamoureux M.L., Delmas V., Larue L., Bennett D.C. 2010. The Colors of Mice - A Model Genetic Network. Wiley-Blackwell, West Sussex, UK. https://doi.org/10.1002/9781444319651
Marks M.S., Seabra M.C. 2001. The melanosome: membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol., 2: 738-748. https://doi.org/10.1038/35096009
Matesic L.E., Yip R., Reuss A.E., Swing D.A., O'Sullivan T.N., Fletcher C.F., Copeland N.G., Jenkins N.A. 2001. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc. Natl. Acad. Sci. USA, 98: 10238-10243. https://doi.org/10.1073/pnas.181336698
Mercer J.A., Seperack P.K., Strobel M.C., Copeland N.G., Jenkins N.A. 1991. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature, 349: 709-713. https://doi.org/10.1038/349709a0
Mermall V., Post P.L., Mooseker M.S. 1998. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science, 279: 527-533. https://doi.org/10.1126/science.279.5350.527
Pastural E., Barrat F.J., Dufourcq-Lagelouse R., Certain S., Sanal O., Jabado N., Seger R., Griscelli C., Fischer A., De Saint Basile G. 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet., 16: 289-292. https://doi.org/10.1038/ng0797-289
Robbins L.S., Nadeau J.H., Johnson K.R., Kelly M.A., Roselli-Rehfuss L., Baack E., Mountjoy K.G., Cone R.D. 1993. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell, 72: 827-834. https://doi.org/10.1016/0092-8674(93)90572-8
Robinson R. 1958. Genetic studies of the rabbit. Bibl. Genet., 17: 229-558.
Searle A.G. 1968. Comparative Genetics of Coat Colour in Mammals. Logos Press, London, UK.
Van Gele M., Dynoodt P., Lambert J. 2009. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res., 22: 268-282. https://doi.org/10.1111/j.1755-148X.2009.00558.x
Wilson S.M., Yip R., Swing D.A., O'Sullivan T.N., Zhang Y., Novak E.K., Swank R.T., Russell L.B., Copeland N.G., Jenkins N.A. 2000. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. USA, 97: 7933-7938. https://doi.org/10.1073/pnas.140212797
Downloads
Issue
Section
License
This journal is licensed under a "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)".