Identification and analysis of single nucleotide polymorphisms in the myosin VA (MYO5A) gene and its exclusion as the causative gene of the dilute coat colour locus in rabbit

Luca Fontanesi, Emilio Scotti, Stefania Dall'Olio, Ahmad Oulmouden, Vincenzo Russo

Abstract

Classical genetic studies have identified different coat colour loci in rabbit and comparative analyses have established corresponding loci across species.  In particular, the rabbit dilute locus is determined by a recessive coat colour mutation that modifies the basic colours influenced by the agouti and extension mutations.  In mice, similar phenotypic effects are determined by a similarly named locus.  This locus encodes the myosin VA (Myo5a) gene, whose protein product is an unconventional myosin that plays an essential role in melanosome transport in the melanocytes.  We selected the same gene as a strong candidate for explaining the dilute coat colour in rabbit. To this end, 1399 bp were re-sequenced, spanning 4 exons out of 41 exons and a portion of intronic regions of the rabbit MYO5A gene to identify polymorphisms that could be useful to confirm or exclude this gene as causative of the rabbit dilute locus.  Nine polymorphisms were identified, one of which was used to follow the segregation of the blue and black colours in a Checkered Giant F1 family.  The single nucleotide polymorphism (SNP) analysed did not co-segregate with the two colours.  These results excluded the MYO5A gene as determinant of the dilute locus in rabbit.  The two alleles of this SNP were also present in several other breeds with different coat colours, further indicating that this marker is not associated with the dilute mutation in rabbits.  Other candidates should be investigated to identify the causative gene of this locus in rabbit.


Keywords

Candidate gene; Coat colour; dilute locus; MYO5A; SNP

Full Text:

PDF

References

Aigner B., Besenfelder U., Müller M., Brem G. 2000. Tyrosinase gene variants in different rabbit strains. Mamm. Genome, 11: 700-702. https://doi.org/10.1007/s003350010120

Barral D.C., Seabra M.C. 2004. The melanosome as a model to study organelle motility in mammals. Pigment Cell Res., 17: 111-118. https://doi.org/10.1111/j.1600-0749.2004.00138.x

Brooks S.A., Gabreski N., Miller D., Brisbin A., Brown H.E., Streeter C., Mezey J., Cook D., Antczak D.F. 2010. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet., 6: e1000909. https://doi.org/10.1371/journal.pgen.1000909

Bultman S.J., Michaud E.J., Woychik R.P. 1992. Molecular characterization of the mouse agouti locus. Cell, 71: 1195-1204. https://doi.org/10.1016/S0092-8674(05)80067-4

Castle W.E. 1930. The Genetics of Domestic Rabbit. Cambridge Harvard University Press, London.

Fontanesi L., Forestier L., Allain D., Scotti E., Beretti F., Deretz-Picoulet S., Pecchioli E., Vernesi C., Robinson T.J., Malaney J.L., Russo V., Oulmouden A. 2010a. Characterization of the rabbit agouti signaling protein (ASIP) gene: Transcripts and phylogenetic analyses and identification of the causative mutation of the nonagouti black coat colour. Genomics, 95: 166-175. https://doi.org/10.1016/j.ygeno.2009.11.003

Fontanesi L., Scotti E., Colombo M., Beretti F., Forestier L., Dall'Olio S., Deretz S., Russo V., Allain D., Oulmouden A. 2010b. A composite six bp in-frame deletion in the melanocortin 1 receptor (MC1R) gene is associated with the Japanese brindling coat colour in rabbits (Oryctolagus cuniculus). BMC Genet., 11: 59. https://doi.org/10.1186/1471-2156-11-59

Fontanesi L., Tazzoli M., Beretti F., Russo V. 2006. Mutations in the melanocortin 1 receptor (MC1R) gene are associated with coat colours in the domestic rabbit (Oryctolagus cuniculus). Anim. Genet., 37: 489-493. https://doi.org/10.1111/j.1365-2052.2006.01494.x

Fontanesi L., Tazzoli M., Russo V. 2007. Non-invasive and simple methods for sampling DNA for PCR analysis of melanocortin 1 receptor (MC1R) gene mutations: a technical note. World Rabbit Sci., 15: 121-126. https://doi.org/10.4995/wrs.2007.598

Fox R.R. 1994. Taxonomy and Genetics, In: Manning P.J., Ringler, D.H., Newcomer C.E. (eds), The Biology of the Laboratory Rabbit. Second edition, Academic Press, San Diego, CA, 1-26.

Futaki S., Takagishi Y., Hayashi Y., Ohmori S., Kanou Y., Inouye M., Oda S., Seo H., Iwaikawa Y., Murata Y. 2000. Identification of a novel myosin-Va mutation in an ataxic mutant rat, dilute-opisthotonus. Mamm. Genome, 11: 649-655. https://doi.org/10.1007/s003350010121

Huang J.D., Cope M.J., Mermall V., Strobel M.C., Kendrick-Jones J., Russell L.B., Mooseker M.S., Copeland N.G., Jenkins N.A. 1998. Molecular genetic dissection of mouse unconventional myosin-VA: head region mutations. Genetics, 148: 1951-1961.

Huang J.D., Mermall V., Strobel M.C., Russell L.B., Mooseker M.S., Copeland N.G., Jenkins N.A. 1998. Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations. Genetics, 148: 1963-1972.

Lamoureux M.L., Delmas V., Larue L., Bennett D.C. 2010. The Colors of Mice - A Model Genetic Network. Wiley-Blackwell, West Sussex, UK. https://doi.org/10.1002/9781444319651

Marks M.S., Seabra M.C. 2001. The melanosome: membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol., 2: 738-748. https://doi.org/10.1038/35096009

Matesic L.E., Yip R., Reuss A.E., Swing D.A., O'Sullivan T.N., Fletcher C.F., Copeland N.G., Jenkins N.A. 2001. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc. Natl. Acad. Sci. USA, 98: 10238-10243. https://doi.org/10.1073/pnas.181336698

Mercer J.A., Seperack P.K., Strobel M.C., Copeland N.G., Jenkins N.A. 1991. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature, 349: 709-713. https://doi.org/10.1038/349709a0

Mermall V., Post P.L., Mooseker M.S. 1998. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science, 279: 527-533. https://doi.org/10.1126/science.279.5350.527

Pastural E., Barrat F.J., Dufourcq-Lagelouse R., Certain S., Sanal O., Jabado N., Seger R., Griscelli C., Fischer A., De Saint Basile G. 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet., 16: 289-292. https://doi.org/10.1038/ng0797-289

Robbins L.S., Nadeau J.H., Johnson K.R., Kelly M.A., Roselli-Rehfuss L., Baack E., Mountjoy K.G., Cone R.D. 1993. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell, 72: 827-834. https://doi.org/10.1016/0092-8674(93)90572-8

Robinson R. 1958. Genetic studies of the rabbit. Bibl. Genet., 17: 229-558.

Searle A.G. 1968. Comparative Genetics of Coat Colour in Mammals. Logos Press, London, UK.

Van Gele M., Dynoodt P., Lambert J. 2009. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res., 22: 268-282. https://doi.org/10.1111/j.1755-148X.2009.00558.x

Wilson S.M., Yip R., Swing D.A., O'Sullivan T.N., Zhang Y., Novak E.K., Swank R.T., Russell L.B., Copeland N.G., Jenkins N.A. 2000. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. USA, 97: 7933-7938. https://doi.org/10.1073/pnas.140212797

Abstract Views

1409
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Association of Melanophilin (MLPH) gene polymorphism with coat colour in Rex rabbits
J. Li, Y. Chen, M. Liu, Q. Chen, J. Zhou, G. Bao, X. Wu
World Rabbit Science  vol: 28  issue: 1  first page: 29  year: 2020  
doi: 10.4995/wrs.2020.12082



 

 Universitat Politècnica de València

 

Official journal of the World Rabbit Science Association (WRSA)

 

e-ISSN: 1989-8886     ISSN: 1257-5011   https://doi.org/10.4995/wrs