Evaluation of environmental sustainability threshold of “humid” and “dry” building systems, for reduction of embodied carbon (CO2)


  • Giacomo Di Ruocco University of Salerno
  • Roberta Melella University of Salerno




sustainable architecture design, eco-architecture, embodied energy, embodied carbon, life cycle assessment


The New Italian Procurement Code (Legislative Decree No. 50/2016), in compliance with the EU directives 26/02/2014, has introduced, among other things, the possibility of obtaining awards, during the awarding of the contract , in terms of reducing the estimated energy impact in the life cycle of the work. The objective of this study was to direct architectural design towards conscious choices that are compatible with environmental legislation. The study, therefore, aimed to analyze the characteristics of the most widespread (wet and dry) construction systems, in order to determine environmental sustainability thresholds referring to each of the four systems hypothesized for the development of the model. The simulated cases for the definition of the model refer to the following construction systems: M1 (structural system in load-bearing masonry); M2 (constructive system with frame structure and traditional brick cladding); M3 (constructive system with metallic bearing structure and dry stratified shell); M4 (constructive system with wooden supporting structure and dry stratified shell). The results indicated design scenarios aimed at using constructive systems that present advantages in terms of disassembly, recovery and reuse of the various components; in addition to the attitude of such systems, to be resilient, or to be able to be adapted and transformed during the life cycle of the building organism.


Download data is not yet available.

Author Biographies

Giacomo Di Ruocco, University of Salerno

Department of Civil Engineering

Roberta Melella, University of Salerno

Department of Civil Engineering


Altamura P. (2016), Costruire a zero rifiuti, Strategie e strumenti per laprevenzione e l'upcycling dei materiali di scarto in edilizia, (1 edizione) Franco Angeli Editore, Milano

Benjamin D. (2017), Embodied Energy and De-sign: Making Architecture Between Metrics and Narratives, Lars Muller Publishers, Zurich Braungart M., Mcdonough W. (2003), Cradle to Cradle: Remaking the Way We Make Things, North Point Pr; 1 edizione

Cellura T., Cellura L. (2018), Il nuovo manuale dei Criteri minimi Ambientali in Edilizia, Mag-gioli Editore, Rimini

Commoner B. (1971), The Closing Circle: Nature, Man, and Technology, Knopf, New York

Di Micco S. (2010), La casa ecologica prefabbricata, Maggioli Editore, Rimini

Di Ruocco G. (2007), Dettagli di facciata. Tra tettonica e rivestimento dell'involucro edilizio, CUES Edizioni, Fisciano (Salerno)

Di Ruocco G. (2012), Oltre la facciata. L’evoluzione tecnológica dell’involucro edilizio tra tradizione e innovazione, CUES Edizioni, Fisciano (Salerno)

Fantozzi F., Scatizzi G., Venturelli F. (2017), La certificazione energetica e ambientale LEED, guida ai principi, Hoepli, Milano

Frattari A. (2014), Soluzioni costruttive per edifici in legno, Rockwool Italia, Milano

Griffin P.W., Hammond G., Norman J.B. (2016), Industrial energy use and carbon emissions reduction: A UK perspective. In Wiley Interdisciplinary Reviews: Energy and Environment - March 2016. https://doi.org/10.1002/wene.212

Hammond G., Jones C.I. (2009), Embodied Carbon: The Concealed Impact of Residential Construction, Green Energy and Technology 31:367-384. https://doi.org/10.1007/978-1-4419-1017-2_23

Kumanayake R.B., Luo H.B. (2017), A tool for assessing life cycle CO2 emissions of buildings in Sri Lanka, Building and Environment, Vol. 128, 15 January 2018, pp. 272-286, ELSEVIER. https://doi.org/10.1016/j.buildenv.2017.11.042

McDonough W., Braungart M. (2002), Cradle to Cradle: Remaking the Way We Make Things. New York: North Point Press.

Malmqvist T., Nehasilova M., Moncaster A., Birgisdottir H., Nygaard Rasmussen F., Houlihan Wiberg A., Potting J. (2018), Design and construction strategies for reducing embodied impacts from buildings - Case study analysis, Eneregy&Building, ELSEVIER, pp.35-47. https://doi.org/10.1016/j.enbuild.2018.01.033

Molocchi A. (1998), La scommessa di Kyoto. Politiche di protezione del clima e sviluppo sostenibile, 1a edizione 1998, Franco Angeli Edizioni, Milano

Monticelli C. (2013), Life Cycle Design in Architettura, Maggioli Editore, Rimini

Nestico’ A., Moffa R. (2018), Economic analysis and operational research tools for estimating productivity levels in off-site construction, Vol. 20. Pag.107-126, ISSN:2036-2404.

Nivelli M. (2012), Soluzioni Tecniche sostenibili e qualità dell’architettura, Dottorato di Ricerca in Ingegneria delle Strutture e del Recupero Edilizio ed Urbano – Università degli Studi di Salerno, a.a. 2009-2012

Pomponi F., De Wolf C., Moncaster A. (2018), Embodied Carbon in Buildings, Springer. https://doi.org/10.1007/978-3-319-72796-7

Hammond G., Jones C. (2008), Inventory of carbon & energy (ICE), University of Bath, version 1.6a

Sabnis A.S., Mysore P., Anant S. (2015), Construction Materials-Embodied Energy Foot-print-Global Warming; Interaction.

Santos D. (2010), Strutture e Case prefabbricate, Hoepli, Milano Saravanan J., Sridhar M. (2015), Construction Technology, Challenges and Possibilities of Low-Carbon Buildings in India, SSRG International Journal of Civil Engineering (SSRG-IJCE) – volume 2 Issue 11 November 2015, pp. 6-11. https://doi.org/10.14445/23488352/IJCE-V2I11P102

Sengupta N., Roy S., Guha H. (2018), Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India. Asian Journal of Civil Engineering 19 (2), pp.139-156. https://doi.org/10.1007/s42107-018-0013-8

Sicignano E. (2011), I campus di Fisciano e Lancusi. Ediz. Illustrata, Gangemi Editore, Roma

Venkatarama R. (2009), Sustainable materials for low carbon buildings. In International Journal of Low-Carbon Technologies - August 2009. https://doi.org/10.1093/ijlct/ctp025

Victoria, M., Perera, S., Davies, A. (2016), A pragmatic approach for embodied carbon estimating in buildings. In newDist: proceedings of sustainable built environment (SBE16): towards post-carbon cities, 18-19 February 2016, Tori-no, Italy. Torino: DIST [online], pages 470-480. https://doi.org/10.1093/ijlct/ctp025




How to Cite

Di Ruocco, G. and Melella, R. (2018) “Evaluation of environmental sustainability threshold of “humid” and ‘dry’ building systems, for reduction of embodied carbon (CO2)”, VITRUVIO - International Journal of Architectural Technology and Sustainability, 3(2), pp. 17–35. doi: 10.4995/vitruvio-ijats.2018.11020.