Potential reduction in energy consumption in consolidated built environments. An analysis based on climate, urban planning and users

Esther Compte Coloma


In order to minimise the environmental problems of energy consumption this study aims to assess the potential energy demand reduction of the three main building types within three urban configurations of a Mediterranean city in the Comunitat Valenciana Region, Spain. To do so this project aims to identify the urban configuration which makes the best use of sun and natural ventilation, and whether this potentially affects the energy consumption of users in three vulnerable neighbourhoods as an analysis methodology prior to any intervention on the building stock.

Factor analysis was carried out in summer taking into account the greater influence of the climate factors in the warm region under study. Therefore, winter conditions were excluded from this analysis as the installations, and the state of conservation of the envelope were the main factors affecting the energy consumption at this time of year. The results obtained show that there is true potential for reducing consumption in the buildings analysed. Due to the viability and easy implementation of these actions, and given the embodied energy, the measures for optimising the envelope of buildings are inadvisable or to be considered only as a last resort.


Obsolete buildings; Warm regions; User behaviour; Energy consumption; Building refurbishment

Full Text:



A.d. Barcelona, (2009). Plan de Movilidad y Espacio Público de Lugo, Lugo city council, Lugo.

Ai Z., Mak C., (2014). in: Modeling of coupled urban wind flow and indoor air flow on a high-density near-wall mesh: Sensitivity analyses and case study for single-sided ventilation, Environ. Model. Software 60 57-68, http://www.sciencedirect.com/science/article/pii/S1364815214001753. https://doi.org/10.1016/j.envsoft.2014.06.010

Antone Faggianelli G., Brun A., Wurtz E., Muselli M., (2014) in: Natural cross ventilation in buildings on mediterranean coastal zones, Energy Build. 77, 206-218, http://www.sciencedirect.com/science/article/pii/S037877881400262X. https://doi.org/10.1016/j.enbuild.2014.03.042

Amado M., Poggi F., (2014). in: Solar energy integration in urban planning: GUUD model, Energy Procedia 50, 277-284, http://www.sciencedirect.com/science/article/pii/S187661021400770X. https://doi.org/10.1016/j.egypro.2014.06.034

Butera J.M., (2013). in: Zero-energy buildings: the challenges, Advanc. Build. Energy Research 7 (1), 51-65, http://www.tandfonline.com/doi/full/10.1080/17512549.2012.756430.

Chesné L., Duforestel T., Roux J.-J., Rusaouën G., (2012). in: Energy saving and environmental resources potentials: Toward new methods of building design, Build. Environ. 58, 199-207, http://www.sciencedirect.com/science/article/pii/S0360132312002016. https://doi.org/10.1016/j.buildenv.2012.07.013

Cole R.J. (2012) in: Regenerative design and development: Current theory and practice. Building Research & Info, 40(1), 1–6. http://www.tandfonline.com/doi/abs/10.1080/09613218.2012.617516 https://doi.org/10.1080/09613218.2012.617516

Eames M., Dixon T., May T., Hunt M. (2013)., in: City futures: Exploring urban retrofit and sustainable transitions. Building Research & Info, 41(5), 504–516. http://www.tandfonline.com/doi/abs/10.1080/09613218.2013.805063 https://doi.org/10.1080/09613218.2013.805063

Episcope (2009). Typology approach for building stock energy assessment. Retrieved from http:// piscope.eu/welcome/

García-Esparza J.A., Caballero C., (2016). in: Procedure for evaluating and rehabilitating envelopes of obsolete buildings in warm regions, Advanc. Build. Energy Research 2016, http://tandfonline.com/doi/full/10.1080/17512549.2016.1237376.

García-Esparza J.A., Alca-iz E., (2017). in: To rehabilitate the habitability. Scenario simulation for consolidated urban areas in warm regions, WEAS Trans. Envi. Develop. 13 Printing.

Herrera I.J., (2010). Análisis urbanístico de Barrios Vulnerables en Espa-a. Sobre la vulnerabilidad urbana, Gobierno de Espa-a, Madrid.

Instituto para la Diversificación y Ahorro de Energía (IDAE) (2011). Analysis of the energy consumption in the residential sector in Spain, (SECH-SPAHOUSEC PROJECT).

Instituto para la Diversificación y Ahorro de Energía (IDAE), Consumos del Sector Residencial en Espa-a, Madrid, 2014. Retrieved from: http://www.idae.es/informacion-y-publicaciones/estudios-informes-yestadisticas

Jiang Y., Alexander D., Jenkins H., Arthur R., Chen Q., (2003). in: Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation, Journal Wind Engin. Indust. Aerodyn. 91(3) (2003), 331-353, http://www.sciencedirect.com/science/article/pii/S016761050200380X. https://doi.org/10.1016/S0167-6105(02)00380-X

Kanters J., Horvat M., (2012) in: Solar energy as a design parameter in urban planning, Energy Procedia 30, 1143-1152, http://www.sciencedirect.com/science/article/pii/S1876610212016438. https://doi.org/10.1016/j.egypro.2012.11.127

Karvonen A., (2013). in: Towards systemic domestic retrofit: A social practices approach. Building Research & Info. 41(5), 563–574. http://www.tandfonline.com/doi/abs/10.1080/09613218.2013.805298 https://doi.org/10.1080/09613218.2013.805298

Kopp G. A., Surry D., Mans C., (2005) in: Wind effects of parapets on low buildings: Part 1. Basic aerodynamics and local loads, Journal of Wind Engin. Indust. Aerodyn. 93 (11), 817–841, http://www.sciencedirect.com/science/article/pii/S0167610505000875. https://doi.org/10.1016/j.jweia.2005.08.006

Kosir M., Guedi Capeluto I., Krainer A., Kristl Z., (2014) in: Solar potential in existing urban layouts-Critical overview of the existing building stock in Slovenian context, Energy Policy 69, 443-456, http://www.sciencedirect.com/science/article/pii/S0301421514000846. https://doi.org/10.1016/j.enpol.2014.01.045

Kurtz F., Monzón M., López-Mesa B., (2015). in: Energy and acoustics related obsolescence of social housing of Spain's post-war in less favoured urban areas. The case of Zaragoza, Informes de la Construcción 67 (Extra-1) http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/4075/4670.

Littlefair P., (1998) in: Passive solar urban design: ensuring the penetration of solar energy into the city, Renew. Sust. Energy Reviews 2, 303-326, http://www.sciencedirect.com/science/article/pii/S1364032197000099.

Littlefair P. (2001), in: Daylight, sunlight and solar gain in the urban environment, Solar Energy 70 (3), 177-185, http://www.sciencedirect.com/science/article/pii/S0038092X00000992. https://doi.org/10.1016/S0038-092X(00)00099-2

Manzano-Agugliaro F., Montoya F.G., Sabio-Ortega A., García-Cruz A. (2015), in: Review of bioclimatic architecture strategies for achieving thermal comfort, Renew. Sustain. Energy Reviews 49, 736-755, http://www.sciencedirect.com/science/article/pii/S1364032115003652. https://doi.org/10.1016/j.rser.2015.04.095

Martins T.A.L., Adolphe L., Bastos L.E.G., (2014). in: From solar constraints to urban design opportunities: Optimization of built form typologies in a Brazilian tropical city, Energy Build. 76, 43-56, http://www.sciencedirect.com/science/article/pii/S0378778814001704. https://doi.org/10.1016/j.enbuild.2014.02.056

Ordo-ez J. Modi V., (2011). in: Optimizing CO2 emissions from heating and cooling and from the materials used in residential buildings, depending on their geometric characteristics, Build. Environ. 46, 2161-2169, http://www.sciencedirect.com/science/article/pii/S0360132311001326 https://doi.org/10.1016/j.buildenv.2011.04.030

Pacheco-Torres R., López-Alonso M., Martínez G., Ordó-ez J., (2015) in: Efficient design of residential buildings geometry to optimize photovoltaic energy generation and energy demand in a warm Mediterranean climate, Energy Efficiency 8, 65-84. https://link.springer.com/article/10.1007/s12053-014-9275-5

Pérez-Lombard L., Ortiz J., Pout C., (2008) in: A review on buildings energy consumption information, Energy Build. 40, 394-398, http://www.sciencedirect.com/science/article/pii/S0378778807001016. https://doi.org/10.1016/j.enbuild.2007.03.007

Ratti C., Baker N., Steemers K., (2005). in: Energy consumption and urban texture, Energy Build. 37 (7), 762-776, http://www.sciencedirect.com/science/article/pii/S0378778804003391. https://doi.org/10.1016/j.enbuild.2004.10.010

Santamouris M., Asimakopoulos D., (1996). Passive cooling of buildings. James & James, London.

Santin O.G., Itard L., Visscher H., (2009). in: The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock, Energy Build. 41 (11), 1223–1232, http://www.sciencedirect.com/science/article/pii/S0378778809001388. https://doi.org/10.1016/j.enbuild.2009.07.002

Serrano-Lanzarote B., Ortega-Madrigal L., García-Prieto-Ruiz A., Soto-Francés L., Soto-Francés V.M., (2016). in: Strategy for the energy renovation of the housing stock in Comunitat Valenciana (Spain), Energy Build. 132, 117–129, http://www.sciencedirect.com/science/article/pii/S037877881630576X. https://doi.org/10.1016/j.enbuild.2016.06.087

Seyfang G., Haxeltine A., (2012). in: Growing grassroots innovations: Exploring the role of community based initiatives in governing sustainable energy transitions. Environment and Planning C: Gov. Pol., 30 381–400. http://journals.sagepub.com/doi/pdf/10.1068/c10222 https://doi.org/10.1068/c10222

Shetabivash H., (2015). in: Investigation of opening position and shape on the natural cross ventilation, Energy Build. 93, 1-15, ttp://www.sciencedirect.com/ science/article/pii/S0378778814011268.

Strategic Management, 24(4) (2012), 407–420. http:// www.tandfonline.com/doi/abs/10.1080/09537325.2012.663964

Vergragt P.J., Brown H.S., in: The challenge of energy retrofitting the residential housing stock: Grassroots innovations and socio-technical system change in Worcester, MA. Technology Analysis

Vermeulen T., Knopf-Lenoir C., Villon P., Beckers B., (2015), in: Urban layout optimization framework to maximize direct solar, Comp. Environ. Urban Systems 51, 1-12, http://www.sciencedirect.com/science/article/pii/S0198971515000137. https://doi.org/10.1016/j.compenvurbsys.2015.01.001

Yarke E., (2005). Ventilación natural de edificios. Fundamentos y Métodos de Cálculo para aplicación de Ingenieros y Arquitectos, Nobuko, Buenos Aires

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Licencia Creative Commons This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Universitat Politècnica de València

e-ISSN: 2444-9091 http://dx.doi.org/10.4995/vitruvio