Digital reconstruction of historic roof structures: developing a workflow for a highly automated analysis

Markus Pöchtrager, Gudrun Styhler-Aydın, Marina Döring-Williams, Norbert Pfeifer

Abstract

Planning on adaptive reuse, maintenance and restoration of historic timber structuresrequiresextensive architectural and structural analysis of the actual condition. Current methods for a modellingof roof constructions consist of several manual steps  including  the  time-consuming  dimensional modelling. The  continuous  development  of terrestrial laser  scanners increases  the  accuracy,  comfort  and  speed  of  the  surveying  work inroof constructions. Resultingpoint  clouds enabledetailed visualisation of theconstructionsrepresented by single points or polygonal meshes, but in fact donot containinformation  about  the  structural  system  and  the  beam  elements.  The  developed  workflow  containsseveral  processing steps on the point cloud dataset. The most important among them arethenormal vector computation, the segmentation of points to extract planarfaces, a classification of planarsegmentsto detect the beam side facesand finally theparametric modelling of the beams on the basis of classified segments. Thisenablesa highly automated transitionfrom raw point cloud data to a geometric model containing beams of the structural system. The geometric model,as well as additional information  about  the  structural  properties  of involved wooden  beams  and  their  joints,is necessaryinput  for  a  furtherstructural modellingof timber constructions. The results of the workflow confirm that the proposed methods work well for beams  with a rectangularcross-section  and  minor  deformations. Scan  shadows  and occlusionof  beamsby additional installationsor interlockingbeamsdecreases  the  modelling  performance,  but  in generala high  level  ofaccuracy  and completeness isachieved ata high degree of automation

Highlights: 
  • This article presents a novel approach to automated reconstruction of beam structures by modelling geometry from segmented point clouds.

  • Wooden beams are modelled as cuboids, thus a rectangular cross-section with minor deformation is required.

  • An accuracy of less than 1 cm can be reached for modelled beams, compared to the reference LiDAR point cloud.


Keywords

historical timber structures; LiDAR (Light Detection And Ranging); point clouds; digital reconstruction; beam frame

Full Text:

PDF

References

Attene, M., & Spagnuolo, M. (2000). Automatic surface reconstruction from point sets in space. Computer Graphics Forum, 19(3), 457–465. doi:10.1111/1467-8659.00438

Baik, A., Yaagoubi, R., & Boehm, J. (2015). Integration of Jeddah historical BIM and 3D GIS for documentation and restoration of historical monument. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 29–34. doi:10.5194/isprsarchives-XL-5-W7-29-2015

Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of Scan-to-BIM and FEM for the Documentation and Analysis of Heritage Timber Roof Structures. In M. Ioannides, E. Fink, A. Moropoulou, M. Hagedorn-Saupe, A. Fresa, G. Liestøl, . . . P. Grussenmeyer (Ed.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2016 (pp. 79–90). Springer, Cham. doi:10.1007/978-3-319-48496-9_7

Besl, P., & McKay, N. (1992). A method for registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239–254. doi:10.1109/34.121791

Chida, A., & Masuda, H. (2016). Reconstruction of polygonal prisms from point-clouds of engineering facilities. Journal of Computational Design and Engineering, 3(4), 322–329. doi:10.1016/j.jcde.2016.05.003

Dore, C., & Murphy, M. (2017). Current state of the art historic building information modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 185–192. doi:10.5194/isprsarchives-XLII-2-W5-185-2017

Dorninger, P., Nothegger, C., & Rasztovits, S. (2013). Efficient 3-D documentation of Neptune fountain in the park of Schönbrunn palace at millimeter scale. Proceedings XXIV International CIPA Symposium, ISPRS Annals, II, 5/W1, 103–108. doi:10.5194/isprsannals-II-5-W1-103-2013

Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016a). Construction history and structural assessment of historic roofs – An interdisciplinary approach. In K. Van Balen, & E. Verstrynge (Eds.), Structural analysis of historical constructions. Anamnesis, diagnosis, therapy, controls (pp. 790–795). London, GB. https://doi.org/10.1201/9781315616995-107

Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016b). The historic roof structures of the Vienna Hofburg: An innovative interdisciplinary approach in architectural sciences laying ground for structural modeling. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 3039–3047). Wien, Austria.

Fischler, M., & Bolles, R. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. doi:10.1145/358669.358692

Glira, P., Pfeifer, N., Briese, C., & Ressl, C. (2015). A Correspondence Framework for ALS Strip Adjustments based on Variants of the ICP Algorithm. Photogrammetrie, Fernerkundung, Geoinformation, 4, 275–289. doi:10.1127/pfg/2015/0270

Hochreiner, G., Eßer, G., & Styhler-Aydın, G. (2016). Modern timber engineering methods in the context of historical timber structures. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 4830–4838). Wien, Austria.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganized points. SIGGRAPH '92 Proceedings of the 19th annual conference on Computer graphics and interactive techniques. ACM SIGGRAPH Computer Graphics, 26(2), 71–78. doi:10.1145/142920.134011

International Organization for Standardization. (2016). Industrial automation systems and integration -- Product data representation and exchange -- Part 21: Implementation methods: Clear text encoding of the exchange Structure. ISO/DIS Standard No. 10303-21. Retrieved from https://www.iso.org/standard/63141.html.

Jung, J., Hong, S., Jeong, S., Kim, S., Cho, H., Hong, S., & Heo, J. (2014). Productive modeling for development of asbuilt BIM of existing indoor structures. Automation in Construction, 42, 68–77. doi:10.1016/j.autcon.2014.02.021

Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Symposium on Geometry Processing (pp. 61-70). The Eurographics Association. doi:10.2312/SGP/SGP06/061-070

Lee, J., Son, H., Kim, C., & Kim, C. (2013). Skeleton-based 3-D reconstruction of as-built pipelines from laser-scan data. Automation in Reconstruction, 35, 199–207. doi:10.1061/9780784412343.0031

Li, W., Goodchild, M., & Church, R. (2013). An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. International Journal of Geographical Information Science, 1227–1250. doi:10.1080/13658816.2012.752093

Nothegger, C., & Dorninger, P. (2009). 3D filtering of high-resolution terrestrial laser scanner point clouds for cultural heritage documentation. Photogrammetrie, Fernerkundung, Geoinformation, 1, 53–63. doi:10.1127/0935-1221/2009/0006

Pfeifer, N., & Winterhalder, D. (2004). Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 76–81.

Pfeifer, N., Mandlburger, G., Otepka, J., & Karel, W. (2014). OPALS – A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45, 125–136. doi:10.1016/j.compenvurbsys.2013.11.002

Pöchtrager, M., Styhler-Aydın, G., Döring-Williams, M., & Pfeifer, N. (2017). Automated Reconstruction of Historic Roof Structures from Point Clouds – Development and Examples. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2-W2, 195–202. doi:10.5194/isprs-annals-IV-2-W2-195-2017

Rabbani, T., Dijkman, S., Van den Heuvel, F., & Vosselman, G. (2007). An integrated approach for modelling and global registration of point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6), 355–370. doi:10.1016/j.isprsjprs.2006.09.006

Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., . . . Lewis, P. (2013). Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5(2), 491–520. doi:10.3390/rs5020491

Stylianidis, E., & Remondino, F. (2016). 3D Recording, Documentation and Management of Cultural Heritage. Caithness, UK: Whittles Publishing.

Thies, M., Pfeifer, N., Winterhalder, D., & Gorte, B. (2004). Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scandinavian Journal of Forest Research, 19(6), 571–581. doi:10.1080/02827580410019562

Thomson, C., & Boehm, J. (2015). Automatic geometry generation from point clouds for BIM. Remote Sensing, 7(9), 11753–11775. doi:10.3390/rs70911753

Vosselman, G., & Maas, H.-G. (2010). Airborne and Terrestrial Laser Scanning. Caithness, UK: Whittles Publishing.

Wang, D., Hollaus, M., Puttonen, E., & Pfeifer, N. (2016). Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sensing, 8(12), p. 974. doi:10.3390/rs8120974

Wang, D., Kankare, V., Puttonen, E., Hollaus, M., & Pfeifer, N. (2016). Reconstructing stem cross section shapes from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 14(2), 272–276. doi:10.1109/LGRS.2016.2638738

Xiong, X., Adan, A., Akinci, B., & Huber, D. (2013). Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, S. 325–337. doi:10.1016/j.autcon.2012.10.006

Yang, X., Koehl, M., & Grussenmeyer, P. (2017). Parametric modelling of as-built beam framed structure in BIM environment. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 651–657. doi:10.5194/isprs-archives-XLII-2-W3-651-2017

Zhang, R., & Zakhor, A. (2014). Automatic identification of window regions on indoor point clouds using LiDAR and cameras. Applications of Computer Vision (WACV), 2014 IEEE Winter Conference, 107–114. doi:10.1109/WACV.2014.6836112

Abstract Views

3380
Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Virtual Disassembling of Historical Edifices: Experiments and Assessments of an Automatic Approach for Classifying Multi-Scalar Point Clouds into Architectural Elements
Arnadi Murtiyoso, Pierre Grussenmeyer
Sensors  vol: 20  issue: 8  first page: 2161  year: 2020  
doi: 10.3390/s20082161



Creative Commons License

This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Universitat Politècnica de València

Official journal of Spanish Society of Virtual Archaeology

e-ISSN: 1989-9947   https://dx.doi.org/10.4995/var