Web-based platform to collect, share and manage technical data of historical systemic architectures: the Telegraphic Towers along the Madrid-Valencia path





technical knowledge, systemic architecture, digital model, web geographic information system (GIS), Spanish telegraphic tower, decision support system (DSS)


Considering the variety of architectural Cultural Heritage typologies, systemic architectures require specific attention in the recovery process. The dimensions of "extension" and "recurrence" at geographic and technological levels affect the complexity of their knowledge process; they require systematic ways for their categorisation and comprehension to guarantee correct diagnosis and suitable rehabilitation. Recent applications involving Internet of Things (IoT) for the built Cultural Heritage have demonstrated the potentialities of three-dimensional (3D) geographic information system (GIS) models and structured databases in supporting complex degrees of knowledge for technicians, as well as management for administrators. Starting from such experiences, the work presents the setting up of a web-based platform to support the knowledge and management of systemic architectures, considering the geographical distribution of fabrics, natural and anthropic boundary conditions, and technical and administrative details. The platform takes advantage of digital models, machine and deep learning procedures and relational databases, in a GIS-based environment, for the recognition and categorisation of prevalent physical and qualitative features of systemic architectures, the recognition and qualification of dominant and recurrent decays and the management of recovery activities in a semi-automatic way. Specifically, the main digital objects used for testing the applied techniques and setting up the platform are based on Red-Green-Blue (RGB) and mapped point clouds of the historical Telegraphic Towers located along the Madrid-Valencia path, resulting from the on-site investigations. Their choice is motivated by the high level of knowledge about the cases reached in the last years by the authors, allowing them to test rules within the decision support systems and innovative techniques for their decay mapping. As the experience has demonstrated, the systematisation of technical details and operative pipeline of methods and tools allow the normalisation and standardisation of the intervention selection process; this offers policymakers an innovative tool based on traditional procedures for conservation plans, coherent with a priority-based practice.


Download data is not yet available.

Author Biographies

Margherita Lasorella, Polytechnic University of Bari

PhD Student at the Department of Civil, Environmental, Land, Construction and Chemistry.
She has specific experience in the field of virtual reality techniques for the recovery and use of the
built heritage, with particular reference to the topics of survey with innovative range-based and
image-based technologies.

Pasquale de-Dato, Universitat Politècnica de València

Adjunct Professor and PhD student at the Department of Architectural Composition who focuses on creating digital twins, augmented and virtual reality for the preservation, enhancement, and management of architectural heritage. He applies his research results to both teaching and professional activities.

Elena Cantatore, Polytechnic University of Bari

Researcher at the Department of Civil, Environmental, Land, Construction and Chemistry.
Her research activities deal with methodologies applied to the historic built environment for the
assessment of its vulnerabilities, its management in risk exposure procedures (both natural and manmade) and innovative processes in supporting their maintenance based on digital models and virtual


Acampa, G., Battisti, F., & Grasso, M. (2023). Decision Support System for the Management of Interventions on Buildings in the Historic Centre of Florence: From Conservation to Regeneration. In International Conference on Computational Science and Its Applications (pp. 329–340). Springer. https://doi.org/10.1007/978-3-031-37126-4_22

Aftabi, P., & Bahramjerdi, S. F. N. (2023). Developing a decision-making framework within the management of historical cities: Towards integrated conservation and development of the Roudaki neighbourhood. Land Use Policy, 129. https://doi.org/10.1016/j.landusepol.2023.106653

Argyridou, E., Karaoli, A., Hadjiathanasiou, M., Karittevli, E., Panagi, I., Mateou, M., … Efstathiou, K. (2023). The first attempt for standardisation in 3D digitisation. The EU study on quality in 3D digitisation of tangible Cultural Heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M–2, 103–109. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-103-2023

Banfi, F., Brumana, R., & Stanga, C. (2019). Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality. Virtual Archaeology Review, 10(21), 14. https://doi.org/10.4995/var.2019.11923

Bas García, V. (2021). La realidad digital al servicio del patrimonio arquitectónico. El caso de la torre telegráfica de Godelleta como experiencia interactiva (Universitat Politècnica de València). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/180656

Bochenska, A., Kot, P., Muradov, M., Markiewicz, J., Zawieska, D., Hess, M., & Antoniou, A. (2023). Critical evaluation of Cultural Heritage architectural standard documentation methods across different European countries. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M–2(M-2–2023), 251–258. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-251-2023

Borin, P., Bernardello, R. A., & Grigoletto, A. (2020). Connecting Historical Information with BIM Ontologies. HBIM Methods for the Visualization of Harris Matrix for the Torrione in Carpi. In Graphical Heritage: Volume 1-History and Heritage (pp. 757–770). Springer. https://doi.org/10.1007/978-3-030-47979-4_65

Bruno, S., Galantucci, R. A., & Musicco, A. (2023). Decay detection in historic buildings through image-based deep learning. VITRUVIO - International Journal of Architectural Technology and Sustainability, 8, 6–17. https://doi.org/10.4995/vitruvio-ijats.2023.18662

Bruno, S., Scioti, A., Pierucci, A., Rubino, R., Di Noia, T., & Fatiguso, F. (2022). VERBUM – virtual enhanced reality for building modelling (virtual technical tour in digital twins for building conservation). Journal of Information Technology in Construction, 27, 20–47. https://doi.org/10.36680/j.itcon.2022.002

Cacciotti, R., Valach, J., Kuneš, P., Čerňanský, M., Blaško, M., & Křemen, P. (2013). Monument Damage Information System (MONDIS): an ontological approach to Cultural Heritage documentation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W1, 55–60. https://doi.org/10.5194/isprsannals-II-5-W1-55-2013

Carniello, M. F., Dos Santos, M. J., & Pimenta, C. A. M. (2022). The territorial approach to development: a methodological perspective to the cultural dimension and its components. Revista Brasileira de Gestao e Desenvolvimento Regional, 18(1), 117–133. https://doi.org/10.54399/rbgdr.v18i1.6517

Costantino, D., Pepe, M., & Restuccia, A. G. (2023). Scan-to-HBIM for conservation and preservation of Cultural Heritage building: the case study of San Nicola in Montedoro church (Italy). Applied Geomatics, 15(3), 607–621. https://doi.org/10.1007/s12518-021-00359-2

Currà, E., D’Amico, A., & Angelosanti, M. (2021). Representation and knowledge of historic construction: HBIM for structural use in the case of Villa Palma-Guazzaroni in Terni. Rivista Tema, 7(1), 8–20. https://doi.org/10.30682/tema0701b

de-Dato, P., & Hernández Navarro, Y. (2016). De torre en torre: mensajes codificados en los cielos de la Meseta. Oleana: Cuadernos de Cultura Comarcal, (30), 159–175.

Dörr, M. (2002). The CIDOC CRM-an ontological approach to semantic interoperability of metadata, 2001. AI Magazine, Special Issue on Ontologies.

Egusquiza, A., Brostrom, T., & Izkara, J. L. (2022). Incremental decision making for historic urban areas’ energy retrofitting: EFFESUS DSS. Journal of Cultural Heritage, 54, 68–78. https://doi.org/10.1016/j.culher.2022.01.011

Fatiguso, F., De Fino, M., Cantatore, E., & Caponio, V. (2017). Resilience of Historic Built Environments: Inherent Qualities and Potential Strategies. Procedia Engineering, 180, 1024–1033. https://doi.org/10.1016/j.proeng.2017.04.262

Grilli, E., Farella, E. M., Torresani, A., & Remondino, F. (2019). Geometric features analysis for the classification of Cultural Heritage point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 541–548. https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019

Kioussi, A., Karoglou, M., Labropoulos, K., Bakolas, A., & Moropoulou, A. (2013). Integrated documentation protocols enabling decision making in Cultural Heritage protection. Journal of Cultural Heritage, 14(3), e141–e146. https://doi.org/10.1016/j.culher.2013.01.007

Lasorella, M., & Cantatore, E. (2023). 3D models CityGML-based combined with technical decision support system for the setting up of digital conservation plans of historic districts. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M–2(M-2–2023), 911–918. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-911-2023

Lasorella, M., Cantatore, E., & Fatiguso, F. (2021). Smart approaches to enhance technical knowledge of in/low-accessible heritage. SCIRES-IT-SCIentific RESearch and Information Technology, 11(2), 97–112. http://dx.doi.org/10.2423/i22394303v11n2p97

Benavides López, J. A., Martín Civantos, J. M., & Rouco Collazo, J. (2020). Architectural survey and archaeological analysis of the pinar castle as a starting point for its conservation. Virtual Archaeology Review, 11(22), 95–115. https://doi.org/10.4995/var.2020.12397

Maietti, F. (2022). Digital Documentation for Enhancement and Conservation of Minor or Inaccessible Heritage Sites. In Cultural Leadership in Transition Tourism: Developing Innovative and Sustainable Models (pp. 139–156). Springer. https://doi.org/10.1007/978-3-031-14121-8_8

Maietti, F., Di Giulio, R., Medici, M., Ferrari, F., Ziri, A. E., Turillazzi, B., & Bonsma, P. (2020). Documentation, Processing, and Representation of Architectural Heritage Through 3D Semantic Modelling. In Impact of Industry 4.0 on Architecture and Cultural Heritage (pp. 202–238). IGI Global. https://doi.org/10.4018/978-1-7998-1234-0.ch009

Martino, A., Savini, P., Hernández Navarro, Y., de-Dato, P., & Fatiguso, F. (2022). The historical telegraphic towers from Madrid to Valencia: from knowledge to preservation and enhancement. Journal of Architectural Conservation, 28(3), 243–260. https://doi.org/10.1080/13556207.2022.2061133

Matrone, F., & Martini, M. (2021). Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds. Virtual Archaeology Review, 12(25), 73. https://doi.org/10.4995/var.2021.15318

Morandotti, M., & Doria, E. (2023). Information system as tool for Cultural Heritage documentation and preservation. Protocol structuring and testing on a case study. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M–2, 1081–1088. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1081-2023

Noardo, F. (2018). Architectural heritage semantic 3D documentation in multi-scale standard maps. Journal of Cultural Heritage, 32, 156–165. https://doi.org/10.1016/j.culher.2018.02.009

Olivé Roig, S. (2007). Distintas etapas de la telegrafía óptica en España. Cuadernos de Historia Contemporánea, 29, 29–34.

Peña-Villasenín, S., Gil-Docampo, M., & Ortiz-Sanz, J. (2019). Professional SfM and TLS vs a simple SfM photogrammetry for 3D modelling of rock art and radiance scaling shading in engraving detection. Journal of Cultural Heritage, 37, 238–246. https://doi.org/10.1016/j.culher.2018.10.009

Pepe, M., Costantino, D., Crocetto, N., & Restuccia Garofalo, A. (2019). 3D modeling of roman bridge by the integration of terrestrial and UAV photogrammetric survey for structural analysis purpose. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W17), 249–255. https://doi.org/10.5194/isprs-archives-XLII-2-W17-249-2019

Perumal, R., & Venkatachalam, S. B. (2023). Non Invasive Decay Analysis of Monument Using Deep Learning Techniques. Traitement Du Signal, 40(2), 639–646. https://doi.org/10.18280/ts.400222

Pintossi, N., Ikiz Kaya, D., & Pereira Roders, A. (2023). Cultural heritage adaptive reuse in Salerno: Challenges and solutions. City, Culture and Society, 33. https://doi.org/10.1016/j.ccs.2023.100505

Pouso-Iglesias, P. X., Arcones-Pascual, G., Bellido-Blanco, S., & Valentín-Gamazo, D. V. (2023). Abandoned rural pre-industrial Heritage: study of the Riamonte mill complex (Galicia, Spain). Virtual Archaeology Review, 14(28), 95–109. https://doi.org/10.4995/var.2023.18652

Romeo López, J. M. (1980). El telégrafo óptico: 1790-1850: estudio crítico comparativo de los diferentes sistemas de transmisión utilizados. El Científico Español Ante Su Historia: La Ciencia En España Entre 1750-1850: I Congreso de La Sociedad Española de Historia de Las Ciencias, 241–250. Diputación Provincial de Madrid.

Rosário, A., & Dias, J. (2022). Sustainability and the Digital Transition: A Literature Review. Sustainability, 14(7), 4072. https://doi.org/10.3390/su14074072

Salerno, R. (2019). Digital Technologies for “Minor” Cultural Landscapes Knowledge. In Geospatial Intelligence (pp. 1645–1670). IGI Global. https://doi.org/10.4018/978-1-5225-8054-6.ch073

Saricaoglu, T., & Saygi, G. (2022). Data-driven conservation actions of heritage places curated with HBIM. Virtual Archaeology Review, 13(27), 17–32. https://doi.org/10.4995/var.2022.17370

Sonnessa, A., di Lernia, A., Oscar Nitti, D., Nutricato, R., Tarantino, E., & Cotecchia, F. (2023). Integration of multi-sensor MTInSAR and ground-based geomatic data for the analysis of non-linear displacements affecting the urban area of Chieuti, Italy. International Journal of Applied Earth Observation and Geoinformation, 117, 103194. https://doi.org/10.1016/j.jag.2023.103194

UNESCO (United Nations Educational, S. and C. O. (2011). Recommendation on the Historic Urban Landscape. UNESCO World Heritage Centre Paris, France.

UNISDR. (2015). Sendai framework for disaster risk reduction 2015-2030 (UNISDR United Nations International Strategy for Disaster Reduction, Ed.).

Valagussa, A., Frattini, P., Crosta, G., Spizzichino, D., Leoni, G., & Margottini, C. (2021). Multi-risk analysis on European cultural and natural UNESCO heritage sites. Natural Hazards, 105(3), 2659–2676. https://doi.org/10.1007/s11069-020-04417-7

Valdés, H. M., Amaratunga, D., & Haigh, R. (2013). Making Cities Resilient: from awareness to implementation. International Journal of Disaster Resilience in the Built Environment, 4(1), 5–8. https://doi.org/10.1108/17595901311299035

Vergès-Belmin, V. (Coord.) (2008). Illustrated glossary on stone deterioration patterns. ICOMOS International Scientific Committee for Stone (ISCS). https://www.icomos.org/public/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf




How to Cite

Lasorella, M., de-Dato, P., & Cantatore, E. (2024). Web-based platform to collect, share and manage technical data of historical systemic architectures: the Telegraphic Towers along the Madrid-Valencia path. Virtual Archaeology Review, 15(30), 123–140. https://doi.org/10.4995/var.2024.20341