Linear programming for the analysis and virtual recreation of historical events: the allocation of the artillery during the Siege of Bilbao in 1874




archaeology of conflict, battlefield archaeology, cyber-archaeology, Geographic Information System (GIS), nineteenth-century wars


The current digital technologies development makes it possible to apply new forms of studying historical events considering the geographical point of view. They rely on the location and the relationships among the different elements that took part in them over a recreated space (e.g. relief, roads, rivers); once these elements have been laid out on the virtual space, Geographic Information Systems (GIS) can be used to analyse several factors, such as distances, visibility, connectivity and so on. Nevertheless, the development of the actions was also driven by the aims, needs and beliefs (either wise or misguided) of the people/actors involved in those situations; therefore, some ways of including reasoning would significantly improve the actual recreation and understanding of the episodes. In this sense, “linear programming” is a very versatile tool for system modelling and optimization that is broadly used in many fields (e.g. industry, transports, agriculture, etc.). Likewise, this technique can also be applied to past scenarios to simulate dynamics and cross-check sources. In this text, two models regarding the distribution and the allocation of supplies during the siege of Bilbao, in the framework of the Third Carlist War (1872-1876), from both parties "”beleaguerer and besieged"” were established based on the war front textual reports. In these models, the scenario is recreated through the system variables (which define the alternatives that can be or could have been taken) and the constraints (which limit the range of action); moreover, the actors’ goals that guided the course of events are defined by the objective. Despite the simplification in the modelling, the results show very interesting hints about the dynamics involved during the processes and are able to highlight some critical issues that significantly conditioned the final results. Besides, the modelling process itself proved to be an opportunity for collaboration between historians and computer scientists.


  • Geographic Information Systems (GIS) allow studying past events through the recreation of the geographical space and the interactions between the elements.

  • Linear programming can be a suitable option to include actors’ reasoning as a part of the modelling process.

  • The usefulness of the system models also enables the identification of critical issues, testing alternative scenarios and sharing information.


Download data is not yet available.

Author Biographies

Alvaro Rodriguez-Miranda, University of the Basque Country (UPV/EHU)

GPAC - Built Heritage Research Group;Department of Applied Mathematics

Gorka Martín-Etxebarria, University of the Basque Country (UPV/EHU)

GPAC - Built Heritage Research Group

Jaione Korro Bañuelos, University of the Basque Country (UPV/EHU),

GPAC - Built Heritage Research Group


Alves, D., & Queiroz, A. I. (2015). Exploring literary landscapes: from texts to spatiotemporal analysis through collaborative work and GIS. International Journal of Humanities and Arts Computing, 9(1), 57–73.

Bachagha, N., Wang, X., Luo, L., Li, L., Khatteli, H., & Lasaponara, R. (2020). Remote sensing and GIS techniques for reconstructing the military fort system on the Roman boundary (Tunisian section) and identifying archaeological sites. Remote Sensing of Environment, 236, 111418.

Barone, P. M. (2019). Bombed Archeology: Towards a Precise Identification and a Safe Management of WWII’s Dangerous Unexploded Bombs. Heritage, 2(4), 2704-2711.

Bevan A., & Wilson, A. (2013). Models of settlement hierarchy based on partial evidence. Journal of Archaeological Science, 40, 2415–2427.

Blanco-Rotea, R. (2015). Arquitectura y Paisaje. Fortificaciones de frontera en el sur de Galicia y norte de Portugal. (Doctoral thesis, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Spain).

Bocinsky, R. K. (2014). Extrinsic site defensibility and landscape-based archaeological inference: An example from the Northwest Coast. Journal of Anthropological Archaeology, 35, 164-176.

Brughmans, T. (2013). Thinking Through Networks: A Review of Formal Network Methods in Archaeology. Journal of Archaeological Method and Theory, 20, 623–662.

Caldwell, T. (2019). Defend Your Coast: Network Analysis of Crusader Fortifications and Settlements in the Kyrenia Region of Cyprus (Doctoral thesis, Faculty of the Program in Maritime Studies of Department of History East Carolina University, United States of America).

Canosa-Betés, J. (2016). Border surveillance: Testing the territorial control of the Andalusian defense network in center-south Iberia through GIS. Journal of Archaeological Science: Reports, 9, 416-426.

Cooper, D., & Gregory, I. N. (2011). Mapping the English Lake District: a literary GIS. Transactions of the Institute of British Geographers, 36(1), 89-108.

Crespo Solana, A. (ed.). (2014). Spatio-temporal Narratives: Historical GIS and the Study of Global Trading Networks (1500-1800). Newcastle: Cambridge Scholars Pub.

Cuca, B., Brumana, R., Scaioni, M., & Oreni, D. (2011). Spatial data management of temporal map series for cultural and environmental heritage. International Journal of Spatial Data Infrastructures Research, 6, 97-125.

Cuerpo del Estado Mayor del Ejército (ed.) (1885). Narración militar de la Guerra Carlista de 1869 a 1876, Madrid: Imprenta y Litografía del Depósito de la Guerra, Tomo IV.

de Kleijn, M., de Hond, R. J. F., & Martinez-Rubi, O. (2016). A 3D GIS Infrastructure for “Mapping the Via Appia”. Digital Applications in Archaeology and Cultural Heritage, 3(2), 23-32.

Deidda, M., Musa, C., & Vacca, G. (2015). A GIS of Sardinia’s coastal defense system (XVI – XVIII century). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4/W7, 17-22.

Düring, M. (2016). How reliable are centrality measures for data collected from fragmentary and heterogeneous historical sources? A case study. In T. Brughmans, A. Collar, & F. Coward (eds.), The Connected Past: Challenges to Network Studies in Archaeology and History, Oxford: Oxford University Press, 85–101.

Earley-Spadoni, T. (2015). Landscapes of warfare: Intervisibility analysis of Early Iron and Urartian fire beacon stations (Armenia). Journal of Archaeological Science: Reports, 3, 22-30.

Ferreira-Lopes, P. (2015). La producción del sistema ferroviario. Hacia una IDE histórica del patrimonio ferroviario de Andalucía. Virtual Archaeology Review Journal, 13, 41-50.

Ferreira-Lopes, P., & Molina Rozalen, J. F. (2018). Historical SDI, thematic maps and analysis of a complex network of medieval towers (13th-15th century) in the Moorish Strip. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 177-183.

Ferreira-Lopes, P., & Pinto Puerto, F. (2018). GIS and graph models for social, temporal and spatial digital analysis in heritage: The case-study of Ancient Kingdom of Seville Late Gothic production. Digital Application in Archaeology and Cultural Heritage, 9, 1-14.

Garrec, T. (2019). Continuous patrolling and hiding games. European Journal of Operational Research, 277, 42-51.

Jahjah, M., Ulivieri, C., Invernizzi, A., & Parapetti, R. (2007). Archaeological remote sensing application pre-post war situation of Babylon archaeological site—Iraq. Acta Astronautica, 61(1-6), 121-130.

Liceras-Garrido, R., Favila-Vázquez, M., Bellamy, K., Murrieta-Flores, P., Jiménez Badillo, D., & Martins, B. (2019). Digital Approaches to Historical Archaeology: Exploring the Geographies of 16th Century New Spain. Journal of Archaeology and Anthropology, 2(1).

Llobera, M. (2007). Reconstruction visual landscapes. World Archaeology, 39(1), 51-69.

Lock, G., & Pouncett, J. (2017). Spatial thinking in archaeology: Is GIS the answer? Journal of Archaeological Science, 84, 129-135.

Luo, L., Wang, X., & Cai, H. (2014). An Integrated 3S and Historical Materials Analysis of the Keriya Paleoriver, NW China. IOP Conference Series: Earth and Environmental Science, 17(1), 012165.

Martín, G. (2017). Aproximación al estudio de tres fuertes de las guerras carlistas en el entorno de Bilbao. Arkeogazte, 7, 193-220.

Martín, G. (2019). Defendiendo la “Invicta Villa”. La línea de Bilbao y su ría y Abra durante la Última Guerra Carlista (1872-1876). Vasconia, 43, 33-73.

Martindale, A, & Supernant, K. (2009). Quantifying the defensiveness of defended sites on the Northwest Coast of North America. Journal of Anthropological Archaeology, 28,191-204.

Mullins, P. (2016). Webs of defense: Structure and meaning of defensive visibility networks in Prehispanic Peru. Journal of Archaeological Science: Reports, 8, 346-355.

Murphy, K. M., Gittings, B., & Crow, J. (2018). Visibility analysis of the Roman communication network in southern Scotland. Journal of Archaeological Science: Reports, 17, 111-124.

Murrieta-Flores, P. (2012). Understanding human movement through spatial technologies. The role of natural areas of transit in the Late Prehistory of South-western Iberia. Trabajos de Prehistoria, 69(1), 103-122.

Peeples, M. A. (2019). Finding a Place for Network in Archaeology. Journal of Archaeological Research, 27, 451-499.

Prieto, A. J., Ortiz, R., Macías-Bernal, J. M., Chávez, M. J., & Ortiz, P. (2020). Artificial intelligence applied to the preventive conservation of heritage buildings. In P. Ortiz, F. Pinto, P. Verhagen, & A. J. Prieto (Eds.), Science and Digital Technology for Cultural Heritage - Interdisciplinary Approach to Diagnosis, Vulnerability, Risk Assessment and Graphic Information Models. Proceedings of the 4th International Congress Science and Technology for the Conservation of Cultural Heritage (TechnoHeritage 2019), March 26-30, 2019, Sevilla, Spain (pp. 245-249). London: CRC Press.

Quesada-García, S., & Romero-Vergara, G. (2019). El sistema de torres musulmanas en tapial de la Sierra de Segura (Jaén). Una contribución al estudio del mundo rural y el paisaje de al-Andalus. Arqueología de la Arquitectura, 16, e079.

Richards-Risseto, H. (2017). What can GIS + 3D mean for landscape archaeology? Journal of Archaeological Science, 84, 10-21.

Rinaudo, F., & Devoti, C. (2013). GIS and land history: the documentation of the ancient Aosta dukedom. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W1, 265–270.

Roldán, I., & Escribano, S. (2015). Arqueología del Conflicto Carlista. Valoración del legado material de varios fuertes del Frente de Estella. Arkeogazte, 5, 133-149.

Roldán, I., & Escribano, S. (2017). Programa de investigación del patrimonio de las guerras carlistas en Navarra. Primeras intervenciones. Trabajos de arqueología navarra, 29, 281-289.

Roldán, I., Martín, G., & Escribano, S. (2019). The archaeology of civil conflict in nineteenth century Spain: material, social and mnemonic consequences of the Carlist Wars. World Archaeology, 51(5), 709-723.

Rua, H., Gonçalves, A.B., & Figueiredo, F. (2013). Assessment of the Lines of Torres Vedras defensive system with visibility analysis. Journal of Archaeological Science, 40, 2113-2123.

Rupp, C. J., Rayson,P., Gregory,I., Hardie, A., Joulain, A., & Hartmann, D. (2014). Dealing with heterogeneous big data when geoparsing historical corpora. IEEE International Conference on Big Data (Big Data) (pp. 80-83). Washington DC, United States of America.

Scott, D., & McFeater, A. (2011). The archaeology of historic battlefields: a history and theoretical development. Conflict Archaeology. Journal of Archaeological Research, 19, 103–132.

Suárez, J. L., & Sancho-Caparrini, F. (2016). Nuevas Tecnologías y Patrimonio: más allá de la digitalización. El caso del "Hispanic Baroque Project". Retrieved August 31, 2020, from

Trapero Fernández, P. (2016). Roman viticulture analysis based on Latin agronomists and the application of a geographic information system in Lower Guadalquivir. Virtual Archaeology Review, 7(14), 53-60.

Verhagen, P., Nuninger, L., & Groenhuijzen, M. (2019). Modelling of pathways and movement networks in archaeology: an overview of current approaches. In P. Verhagen et al. (Eds.), Finding the Limits of the Limes, Computational Social Sciences. Computational Social Sciences (pp. 217-249). Cham: Springer.

Verhagen, P., Nuninger, L., Tourneux, F. P., Bertoncello, F., & Jeneson, K. (2013). Introducing the human factor in predictive modelling: a work in progress. In CAA 2012. Archaeology in the digital era. Papers from the 40th annual conference of computer applications and quantitative methods in archaeology, Southampton, 26–29 March 2012 (pp. 379–388). Amsterdam: Amsterdam University Press.

Villalba, D., & Bueno, Y. (2012). Decisiones empresariales con hoja de cálculo. Madrid, Spain: Pirámide.

Whitley, T. G. (2017). Geospatial analysis as experimental archaeology. Journal of Archaeological Science, 84, 113-114.




How to Cite

Rodriguez-Miranda, A., Ferreira-Lopes, P., Martín-Etxebarria, G., & Korro Bañuelos, J. (2021). Linear programming for the analysis and virtual recreation of historical events: the allocation of the artillery during the Siege of Bilbao in 1874. Virtual Archaeology Review, 12(25), 99–113.