HumanOS: an open source nomadic software database for physical anthropology and archaeology

Rozenn Colleter, Jean-Baptiste Romain, Jean-Baptiste Barreau


With the democratization of computers, tablets and smartphones, the data acquisition and exploration on archaeological sites are changing significantly. The digitization of information allows a faster, more efficient and more standardized data recording that facilitates the synthesis work required by the discipline. Numerous database programmes are being developed in archaeology and physical anthropology, notably with targeted tools developed to meet specific needs. However, to the authors’ knowledge, no efficient, free and open-source program for the recording of human bones in an archaeological context exists yet. In this paper, a mobile application for the intuitive recording of human bones from archaeological sites is described; this app, defined for the field and biological anthropologists, allows making an inventory of the burials from site to the laboratory from archaeological digs in an intuitive style. In addition to the recording of the skeleton, the application permits the recording of the discovery context. The application also gives significant freedom to the user, who can easily create research fields to their own research objectives. Finally, it permits exporting the information, either as text (automatic report) and/or as tables for statistical use. It is a modular, ergonomic and portable tool which meets researchers' requirements without needing an internet connection; it stores the recorded information in several formats (CSV, SVG, HTML and/or JSON), in a sustainable computer language, permitting complementary modules development. The system is implemented in the form of a free and open-source web application, programmed in JavaScript (available from and supplied in the form of a simple ZIP file to decompress. The application does not require any special installation, as it opens by clicking on the executable "HumanOS.html" with any web browser, even without an Internet connection.


  • We have developed a mobile application which allows "field anthropologists" to record burials inventories from archaeological excavations on site and in the laboratory, in an intuitive way.

  • In addition to recording the skeleton, the application makes it possible to note the context of the discovery and to create fields of investigation according to its own research objectives.

  • It allows data export in the form of text (automatic report) and/or tables for statistical uses.


physical anthropology; database searching; archaeological site; interoperability; open-source software; software development

Full Text:



Ackerman, J. (1998). The Visible Human Project. Proceedings of the IEEE 86(3), 504–511.

Adams, M., Chu, M., Khan, S., Lai, J., Lao, E., & Nardi, B. (2004). AnthroSource: Designing a portal for anthropologists. First Monday, 9(10).

Albert, R. M., Ruíz, J. A., & Sans, A. (2016). PhytCore ODB: a new tool to improve efficiency in the management and exchange of information on phytoliths. Journal of Archaeological Science 68, 98-105.

Altschul, J. H., Kintigh, K. W., Klein, T. H., Doelle, W. H., Hays-Gilpin, K. A., … & Sabloff, J. A. (2017). Fostering synthesis in archaeology to advance science and benefit society. Proceedings of the National Academy of Sciences, 114(42), 10999–11002.

Baeye, M., Quinn, R., Deleu, S., & Fettweis, M. (2016). Detection of shipwrecks in ocean colour satellite imagery. Journal of Archaeological Science, 66, 1-6.

Barreau, J.-B., Sachet, M., Lopez-Romero, E., Daire, M.-Y. & Olmos-Benlloch, P. (2013). ALERT mobile: Managing coastal archaeological heritage in Western France. In IEEE 2013 Digital Heritage International Congress (DigitalHeritage) (pp. 611–614). Marseille, France.

Bernardini, F., Vinci, G., Forte, E., Furlani, S., Pipan, M., Biolchi, S., Min, A. D., Fragiacomo, A., Micheli, R., Ventura, P. & Tuniz, C. (2018). Discovery of ancient Roman “highway” reveals geomorphic changes in karst environments during historic times. PLoS ONE, 13(3), e0194939.

Braga, J., Samir, C., Risser, L., Dumoncel, J., Descouens, D., Thackeray, J. F., Balaresque, P., Oettlé, A., Loubes, J.-M. & Fradi, A. (2019). Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Scientific Reports, 9, 1–9.

Brickley, M., & McKinley, J. I. (Eds.) (2004). Guidelines to the Standards for Recording Human Remains. Institute for Field Archaeologists, 7. British Association for Biological Anthropology and Osteoarchaeology and Institute of Field Archaeologists. Retrieved from

Brŭžek, J., Santos, F., Dutailly, B., Murail, P. & Cunha, E. (2017). Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. American Journal of Physical Anthropology, 164, 440–449.

Bureau, V. (2019). Reportages photos et images des fouilles archéologiques, vidéo sur l’archéologie et le métier d’archéologue. INRAP Retrieved April 3, 2020.

Chaillou, A. (2003). Nature, statut et traitements informatisés des données en archéologie: les enjeux des systèmes d’informations archéologiques (Doctoral dissertation, Université Lumière Lyon 2). Retrieved from

Chan, K. (2013). Anthropomotron. Retrieved from November 11, 2013, from

Colleter, R. (2018). Pratiques funéraires, squelettes et inégalités sociales: étude d'un échantillon des élites bretonnes à l'époque moderne (Doctoral dissertation, Université Toulouse 3 - Paul Sabatier). Retrieved from

Colleter, R. & Barreau, J.-B. (2017). La fouille des sépultures: du terrain à l’enregistrement systématique et l’exploitation digitale des données. Archéo-Nil, 28, 57–65.

Colleter, R., Clavel, B., Pietrzak, A., Duchesne, S., Schmitt, L., Richards, M. P., Telmon, N., Crubézy, É. & Jaouen, K. (2019). Social status in late medieval and early modern Brittany: insights from stable isotope analysis. Archaeological and Anthropological Sciences, 11, 823–837.

Colleter, R., Dedouit, F., Duchesne, S., Mokrane, F.-Z., Gendrot, V., Gérard, P., Dabernat, H., Crubézy, É. & Telmon, N. (2016). Procedures and frequencies of embalming and heart extractions in Modern period in Brittany. Contribution to the evolution of ritual funerary in Europe. PLoS ONE, 11(12), e0167988.

Colleter, R., Roy, G., Gaugry, T. & Barreau, J.-B. (2015). “HumanOs” Project: a Nomadic Osteological Inventory. In 44th Computer Applications and Quantitative Methods in Archaeology Conference, Oslo, Norway.

Conyers, L. B., Sutton, M.-J. & St Pierre, E. (2019). Dissecting and interpreting a three-dimensional ground-penetrating radar dataset: an example from Northern Australia. Sensors, 19(5), 1239, 1–11.

Courtaud, P. (1996). “Anthropologie de sauvetage” : Vers une optimisation des méthodes d’enregistrement. Présentation de la fiche anthropologique. Bulletins et Mémoires de la Société d’Anthropologie de Paris 8, 157–167.

Crane, B., Ballo, R., Sartori, J., Kronenberg, R., & Stern, T. (2019). Burial sites inventory and guidelines, Montgomery County Planning Department. Retrieved from

Cuy, S., Watson, J., Kleinke, T. & De Oliveira, D. (2017). iDAI. field 2.0: A modern approach to distributed fieldwork documentation. In 22nd International Conference on Cultural Heritage and New Technologies, Vienna, Austria.

Davies, T. G., Shaw, C. N. & Stock, J. T. (2012). A test of a new method and software for the rapid estimation of cross-sectional geometric properties of long bone diaphyses from 3D laser surface scans. Archaeological and Anthropological Sciences, 4, 277–290.

Delattre, V. (2018). Handicap: quand l'archéologie nous éclaire. Paris: édition Le Pommier.

Desachy, B. (2008). Le Stratifiant, un outil de traitement des données stratigraphiques. Archeologia e Calcolatori 19, 187–194. Retrieved from

Duday, H., Courtaud, P., Crubézy, É., Sellier, P. & Tillier, A.-M. (1990). L’Anthropologie «de terrain» : reconnaissance et interprétation des gestes funéraires. Bulletins et Mémoires de la Société d’anthropologie de Paris, 2(3-4), 29–49.

Egharevba, H. O., Fatokun, O., Aboh, M., Kunle, O. O., Nwaka, S. & Gamaniel, K. S. (2019). Piloting a smartphone-based application for tracking and supply chain management of medicines in Africa. PLoS ONE 14(7), e0217976.

Elfadaly, A. & Lasaponara, R. (2019). On the Use of Satellite Imagery and GIS Tools to Detect and Characterize the Urbanization around Heritage Sites: The Case Studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy. Sustainability, 11, 2110.

Eve, S. & Hunt, G. (2008). ARK: A developmental framework for archaeological recording. In Layers of Perception: Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology, Berlin, Germany.

Ferrari, I. & Quarta, A. (2019). The Roman pier of San Cataldo: from archaeological data to 3D reconstruction. Virtual Archaeology Review, 10(20), 28–39.

Feugère, M. (2011). Artefacts: encyclopédie en projet, outil d’aujourd’hui. Instrumentum: bulletin du groupe de travail européen sur l’artisanat et les productions manufacturées dans l’Antiquité, 24–27.

Gailledrat, E. (2016). SYSLAT. Système d’Information Archéologique. In Forum de La Méditerranée. Sciences Humaines et Sociales. Marseille, France.

Gaultier, M. (2017). Une base de données en anthropologie adaptée pour l’archéologie préventive. Usages, enjeux et limites au service de l’archéologie du département d’Indre-et-Loire (Sadil). Bulletins et Mémoires de la Société d’Anthropologie de Paris, 29(3-4), 159-164.

Groen, W. M., Márquez-Grant, N., & Janaway, R. (2015). Forensic archaeology: a global perspective. Pondicherry, India: John Wiley & Sons.

Habert, B. & Huc, C. (2010). Building together digital archives for research in social sciences and humanities. Social science information, 49(3), 415–443.

Herzlinger, G., & Grosman, L. (2018). AGMT3-D: A software for 3-D landmarks-based geometric morphometric shape analysis of archaeological artifacts. PLoS ONE, 13(11), e0207890.

Jantz, R.J. & Moore-Jansen, P.H. (2006). Database for Forensic Anthropology in the United States, 1962-1991. Ann Arbor, MI, USA: Inter-university Consortium for Political and Social Research [distributor].

Kappelman, J. & Keane, P. (2011). eSkeletons: a digital library of primate anatomy. American Journal of Physical Anthropology, 144(S52), 182.

Kepple, T. M., Sommer III, H. J., Siegel, K. L., & Stanhope, S. J. (1997). A three-dimensional musculoskeletal database for the lower extremities. Journal of Biomechanics, 31(1), 77-80.

Kintigh, K.W., Altschul, J.H., Beaudry, M.C., Drennan, R.D., Kinzig, A.P., Kohler, T.A., Limp, W.F., Maschner, H.D.G., Michener, W.K., Pauketat, T.R., Peregrine, P., Sabloff, J.A., Wilkinson, T.J., Wright, H.T., Zeder, M.A., 2014. Grand challenges for archaeology. American Antiquity, 79(1), 5-24.

Knüsel, C. J., & Robb, J. (2016). Funerary taphonomy: an overview of goals and methods. Journal of Archaeological Science: Reports, 10, 655-673.

Le Cloirec, G. (2017). Couvent des Jacobins : du quartier antique à l’établissement dominicain. Service régional de l’archéologie de Bretagne. Rapport de fouilles archéologiques INRAP. Retrieved from

LeFebvre, M.J., Brenskelle, L., Wieczorek, J., Kansa, S.W., Kansa, E.C., Wallis, N.J., King, J.N., Emery, K.F. & Guralnick, R. (2019). ZooArchNet: Connecting zooarchaeological specimens to the biodiversity and archaeology data networks. PLoS ONE, 14(4), e0215369.

Leierer, L., Jambrina-Enríquez, M., Herrera-Herrera, A. V., Connolly, R., Hernández, C. M., Galvan, B., & Mallol, C. (2019). Insights into the timing, intensity and natural setting of Neanderthal occupation from the geoarchaeological study of combustion structures: A micromorphological and biomarker investigation of El Salt, unit Xb, Alcoy, Spain. PLoS ONE, 14(4), e0214955.

Lewis, B., & Griffin, M. (2011). Special collections and the new web: Using LibGuides to provide meaningful access. Journal of Electronic Resources Librarianship, 23(1), 20-29.

Lin, A. Y. M., Huynh, A., Lanckriet, G., & Barrington, L. (2014). Crowdsourcing the unknown: The satellite search for Genghis Khan. PLoS ONE, 9(12), e114046.

Locher, A., Perdoch, M., Riemenschneider, H., & Van Gool, L. (2016, March). Mobile phone and cloud—A dream team for 3D reconstruction. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1-8).

Lugo, A. J. D., Ávila, A. E. S., Gutiérrez, M. P. V., & Montenegro, E. J. M. (2016). Creación de un odontograma con aplicaciones Web/Creation of an odontogram with Web applications. Revista Iberoamericana de las Ciencias Computacionales e Informática, 5(10), 20-32.

Marshall, H. H., Griffiths, D. J., Mwanguhya, F., Businge, R., Griffiths, A. G. F., … & Cant, M.A. (2018). Data collection and storage in long-term ecological and evolutionary studies: The Mongoose 2000 system. PLoS ONE, 13(1), e0190740.

Mays, S. (2010). The Archaeology of Human Bones. London: Routledge.

McEntyre, J., & Lipman, D. (2001). PubMed: bridging the information gap. Canadian Medical Association Journal, 164(9), 1317-1319.

Meghini, C., Scopigno, R., Richards, J., Wright, H., Geser, G., Cuy, S., Fihn, J., Fanini, B., Hollander, H., Niccolucci, F., others, (2017). ARIADNE: a research infrastructure for archaeology. Journal on Computing and Cultural Heritage, 10(3), 1-27.

Morgan, B., Ford, A. L., & Smith, M. J. (2019). Standard methods for creating digital skeletal models using structure‐from‐motion photogrammetry. American Journal of Physical Anthropology, 169(1), 152-160.

Morgan, C., & Wright, H. (2018). Pencils and pixels: drawing and digital media in archaeological field recording. Journal of Field Archaeology, 43(2), 136-151.

Nocerino, E., Polesi, F., Remondino, F., & Van Gool, L. (2018). Point clouds from smartphones. GIM International, 32(3), 18-21.

Proko (2014). Skelly - Poseable Anatomy Model for Artists | Proko. Retrieved December 6, 2019. Retrieved from

Rua, H., & Alvito, P. (2011). Living the past: 3D models, virtual reality and game engines as tools for supporting archaeology and the reconstruction of cultural heritage–the case-study of the Roman villa of Casal de Freiria. Journal of Archaeological Science, 38(12), 3296-3308.

Sachau-Carcel, G. (2012). Apport de la modélisation tridimensionnelle à la compréhension du fonctionnement des sépultures multiples : l’exemple du secteur central de la catacombe des Saints Pierre-et-Marcellin (Rome, Italie) (Ier-milieu IIIe s. ap. J.-C.) (Doctoral dissertation, University of Bordeaux 3). Retrieved from

Santos, P., Ritz, M., Fuhrmann, C., & Fellner, D. (2017). 3D mass digitization: a milestone for archeological documentation. Virtual Archaeology Review, 8(16), 1-11.

Takasu, K., Saito, T., Yamada, T., & Ishikawa, T. (2015). A survey of hardware features in modern browsers: 2015 edition. In IEEE 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (pp. 520-524).

Tchérémissinoff, Y., & Seguin, M. (2019). Mise en place d’un protocole photogrammétrie et SIG dès la fouille préventive: la sépulture collective de Mas Rouge à Montpellier (Hérault). Préhistoires Méditerranéennes, (7): Retrieved from October 29, 2019.

Themistocleous, K. (2017). Model reconstruction for 3D vizualization of cultural heritage sites using open data from social media: The case study of Soli, Cyprus. Journal of Archaeological Science: Reports, 14, 774-781.

Thieler, E. R., Zeigler, S. L., Winslow, L. A., Hines, M. K., Read, J. S., & Walker, J. I. (2016). Smartphone-based distributed data collection enables rapid assessment of shorebird habitat suitability. PLoS ONE, 11(11), e0164979.

Waagen, J. (2019). New technology and archaeological practice. Improving the primary archaeological recording process in excavation by means of UAS photogrammetry. Journal of Archaeological Science, 101, 11-20.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Creative Commons License

This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Universitat Politècnica de València

Official journal of Spanish Society of Virtual Archaeology

e-ISSN: 1989-9947