Architectural survey and archaeological analysis of the Píñar Castle as a starting point for its conservation

José Antonio Benavides López, José Mª Martín Civantos, Jorge Rouco Collazo

Abstract

This paper presents an applied methodology for the graphic documentation, analysis and criteria determination for the protection and conservation of built heritage. One of the main risks when restoring medieval rammed earth architecture is the lacking of an optimal graphic base of its structures. This paper’s main objective is the holistic knowledge of the Píñar fortress (Granada), analysis the building sequence from an archaeological perspective, and performing a rigorous 3D survey of its structures as a fundamental procedure. This survey was carried out applying the new technologies in graphic documentation: Unmanned Aerial Vehicle (UAV)-based multi-image photogrammetry and Structure-from-Motion (SfM) processing. The new systems of aerial three-dimensional (3D) capture and representation are changing the paradigm in the architectural heritage documentation, being much more efficient and precise. This high-quality documentation is fundamental for the archaeological research of the fortress’ building sequence, remarkably easing research as well as results dissemination. The constructive techniques and building sequence study made with archaeological methodology has revealed the complex historical evolution of Píñar fortress, since it was built in the Almohad period, with important transformations in Nasrid and Castilian periods. These alterations in such a narrow span of time shed light on the importance of this fortification in the border organization in the Late Middle Ages. The experimentation with Building Information Modelling (BIM) tools applied to heritage (HBIM) is showing its great potential in processing data linked to conceptual models, integrating graphic documentation with archaeological and historical interpretation. Nevertheless, the complexity of historical buildings and the hard work of manual modelling are making its wider use in archaeology difficult. The BIM model of Píñar fortress has been enriched with data such as type of material, building technique, chronology, pathologies and modifications, differentiating the historical phases with specific colours to make its identification easier. Its aim is to acquire a better knowledge of the fortress historical evolution, thus allowing the creation of conservation and protection strategies. The holistic knowledge of a building is a complex task that requires the work of different professionals. The ones in charge of the graphic documentation must know the survey objectives and the needs of the rest of the team. The current and future management of heritage requires professionals working on conservation with updated skills in digital technologies. The results of public heritage research with these technologies should be in open access platforms to be used by all researchers and professionals that could need them.


Keywords

architectural survey; HBIM; graphic documentation; photogrammetry with UAV; building archaeology; defensive architecture

Full Text:

PDF

References

Acién, M. (1999). Los tugur del reino de Granada. Ensayo de identificación. In A. Bazzana (Ed.), Castrum 5. Archéologie des spaces agraires méditerranéens au Moyen Âge (pp. 427-438). Madrid: Casa de Velázquez.

Almagro, A. (2004). Levantamiento arquitectónico. Granada: Universidad de Granada.

Angulo, R. (2012). Construcción de la base gráfica para un sistema de información y gestión del patrimonio arquitectónico: Casa de Hylas. Arqueología de la Arquitectura, 9, 11-25. https://doi.org/10.3989/arqarqt.2012.10005

Antón, D., Medjdoub, B., Shrahily, R., & Moyano, J. (2018). Accuracy evaluation of the semi-automatic 3D modeling for historical building information models. International Journal of Architectural Heritage, 12(5), 790-805. https://doi.org/10.1080/15583058.2017.1415391

Benavides, J. A., Aranda, G., Sánchez, M., Alarcón, E., Fernández, S., Lozano, Á., & Esquivel, J. A. (2016). 3D modelling in archaeology: the application of Structure from Motion methods to the study of the megalithic necropolis of Panoria (Granada, Spain). Journal of Archaeological Science: Reports, 10, 495-506. https://doi.org/10.1016/j.jasrep.2016.11.022

Benavides López, J.A. (2017). Nuevas tecnologías en la documentación del patrimonio: La alcazaba de Guadix. El castillo de Píñar (Tesis doctoral, Universidad de Granada, España). http://hdl.handle.net/10481/47477

Bonet, M. T., & Martín, J. M. (2007). Informe preliminar de la intervención arqueológica de apoyo a la restauración del castillo de Píñar (Píñar, Granada). Granada.

Brogiolo, G. P. (1988). Archeologia dell'edilizia storica. Como: Edizioni New Press.

Bruno, S., De Fino, M., & Fatiguso, F. (2018). Historic Building Information Modelling: performance assessment for diagnosis-aided information modelling and management. Automation in Construction, 86, 256-276. https://doi.org/10.1016/j.autcon.2017.11.009

Bruno, S., Musicco, A., Fatiguso, F., & Dell'Osso, G. R. (2019). The role of 4D historic building information modelling and management in the analysis of constructive evolution and decay condition within the refurbishment process. International Journal of Architectural Heritage. https://doi.org/10.1080/15583058.2019.1668494

Cefalu, A., Haala, N., & Fritsch, D. (2017). Hierarchical Structure from Motion combining global image orientation and structreless bundle adjustment. International Archives of Photogrammetry, Remote Sensing and Spatial Informations System, XLII-1/W1, 535-542. https://doi.org/10.5194/isprs-archives-XLII-1-W1-535-20177

de Luque, F. (2003). El castillo de Píñar: análisis arqueológico de las estructuras de superficie. Granada: Nailos.

Dore, C., Murphy, M., Mccartht, S., Brechin, F., Casidy, C., & Dirix, E. (2015). Structural simulations and analysis of conservation - historical building information modeling (HBIM). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 351-357. https://doi.org/10.5194/isprsarchives-XL-5-W4-351-2015

El-Habrouk, H., Li, X. P., & Faig, W. (1996). Determination of geometric characteristics of a digital camera by self-calibration. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXI-B1, 60-64.

Kersten, T. P., & Lindstaedt, M. (2012). Automatic 3D object reconstruction from multiple images for architectural, cultural heritage and archaeological applications using open-source software and web services. Photogrammetrie - Fernerkundung - Geoinformation, 2012(6), 727-740. https://doi.org/10.1127/1432-8364/2012/0152

Lowe, D. (1999). Object recognition from local scale-invariant features. In The Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol. 2 (pp. 1150-1157). Washington: IEEE Computer Society. https://doi.org/10.1109/ICCV.1999.790410

Malpica, A. (1998). Los castillos en época nazarí. Una primera aproximación. In A. Malpica Cuello (Ed.), Castillos y territorio en al-Andalus (pp. 246-293). Granada: Athos-Pérgamos.

Malpica, A., & Martín, J. M. (2006). Las villas nuevas medievales del reino de Granada (siglo XV-comienzos XVI). Boletín Arkeolan, 14, 350-369.

Martín, J. M. (2004). Proposta preliminare di sistematizzazione delle tecniche costruttive d'al-Andalus nel territorio di Ilbira-Granada (Andalusia, Spagna). Archeologia dell'Architettura, 9, 105-118.

Martín, M. (2009). La construcción del tapial calicastrado en época nazarí. In V Convención técnica y tecnológica de la arquitectura técnica (pp.1-15). Albacete: COAAT.

Martín, R., Cámara, L., & Murillo, J. I. (2018). Análisis integrado de construcciones históricas: secuencia estratigráfica y diagnóstico patológico. Aplicación en la iglesia de Santa Clara (Córdoba). Arqueología de la Arquitectura, 15, 067. https://doi.org/10.3989/arq.arqt.2018.001

Menna, F., Nocerino, E., Remondino, F., Dellepiane, M., & Callieri, M. S. R. (2016). 3D digitization of a heritage masterpiece - a critical analysis on quality assessment. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5, 675-683. https://doi.org/10.5194/isprsarchives-XLI-B5-675-2016

Mileto, C., & Vegas, F. (2003). El análisis estratigráfico constructivo como estudio previo al proyecto de restauración arquitectónica: metodología y aplicación. Arqueología de la Arquitectura, 2, 189-196. https://doi.org/10.3989/arq.arqt.2003.46

Ministerio de Educación, Cultura y Deporte (2015). Plan Nacional de Arquitectura Defensiva.

Murphy, M., McGovern, E., & Pavia, S. (2013). Historic Building Information Modelling - Adding intelligence to láser and image based surveys of European classical architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 76, 89-102. https://doi.org/10.1016/j.isprsjprs.2012.11.006.

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1-15. https://doi.org/10.1007/s12518-013-0120-x

Nieto, J., & Moyano, J. (2014). El estudio paramental en el modelo de información del edificio histórico o Proyecto HBIM. Virtual Archaeology Review, 5(11), 73-85.

https://doi.org/10.4995/var.2014.4183

Nieto, J., Moyano, J., & García, Á. (2019). Estudio constructivo del Palacio de los Niños de Don Gome (Andújar, Jaén), gestionado desde el proyecto HBIM. Virtual Archaeology Review, 10(20), 84-97. https://dx.doi.org/10.4995/var.2019.10567

Paris, L., & Wahbeh, W. (2016). Survey and representation of the parametric geometries in HBIM. Disegnarecon, 9(16), 12-11.

Peinado, R. (1989). La repoblación de la tierra de Granada. Los Montes Orientales (1485-1525). Granada: Universidad de Granada.

Pereira Uzal, J. M. (2013). Modelado 3D en patrimonio cultural por técnicas de structure from motion. Ph Investigación, 1, 77-87.

Peucker, T. K., Fowler, R. J., & Little, J. J. (1978). The triangulated irregular network. In Proceedings of the Digital Terrain Models (DTM) Symposium. Falls Church: American Society of Photogrammetry.

Previtali, M., & Valente, R. (2019). Archaeological documentation and data sharing: digital surveying and open data approach applied to archaeological fieldworks. Virtual Archaeology Review, 10(20), 17-27. https://doi.org/10.4995/var.2019.10377

Rodríguez-Navarro, P. (2012). La fotogrametría digital automatizada frente a los sistemas basados en sensores 3D activos. EGA Expresión Gráfica Arquitectónica, 20, 100-111. https://doi.org/10.4995/ega.2012.1408

Remondino, F., Nocerino, E., Toschi, I., & Menna, F. (2017). A critical review of automated photogrammetric processing of large datasets. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 591-599. https://doi.org/10.5194/isprs-archives-XLII-2-W5-591-2017

Schönberger, J. L., & Frahm, J. M. (2016). Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4104-4113). Las Vegas, NV. https://doi.org/10.1109/CVPR.2016.445

Scopigno, R., Callieri, M., Dellepiane, M., Ponchio, F., & Potenziani, M. (2017). Delivering and using 3D models on the web: are we ready?. Virtual Archaeology Review, 8(17), 1-9.

https://doi.org/10.4995/var.2017.6405

Statham, N. (2019). Scientific rigour of online platforms for 3D visualisation of heritage. Virtual Archaeology Review, 10(20), 1-16. https://doi.org/10.4995/var.2019.9715

Torres, L. (1949). Arte almohade. Arte nazarí. Arte mudéjar (Vol. IV). Madrid: Plus Ultra.

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021

Abstract Views

3539
Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Creative Commons License

This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Universitat Politècnica de València

Official journal of Spanish Society of Virtual Archaeology

e-ISSN: 1989-9947   https://dx.doi.org/10.4995/var