Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality





virtual reality (VR), augmented reality (AR), scan-to-BIM, grades of generation (GOG), 3D modelling, virtual museum


The dissemination of the tangible and intangible values of heritage building represents one of the most important objectives in the field of Digital Cultural Heritage (DCH). In recent years, different studies and research applied to heritage monuments have shown how it is possible to improve the awareness of the architectural heritage through the integration of latest developments in the field of 3D survey, 3D modelling, Building Information Modeling (BIM) and eXtended Reality (XR). On the other hand, this digital workflow requires a huge amount of data sources and a holistic approach to reach a high level of information sharing coming from different disciplines and sectors such as restoration, geomatics, 3D virtual museums and serious gaming. In conjunction with entertainment software and gaming, this research shows the main results obtained during the generative process of digital environments oriented to improve the level of information and to enrich the contents coming from the informative models. The case study is represented by one of the most important Lombard monuments: the Basilica of Sant’Ambrogio in Milan. This study, starting from the 3D survey and the data collection of the historical records of the church, improves the creation of an XR experience that reaches a new level of interactivity for different types of devices (desktop, mobile, VR headset) and users (experts, non-experts).


  • Generative modelling requirements and novel grades of generations (GOG) and accuracy (GOA) are presented in order to improve the digitisation of built heritage from the 3D survey, reducing time and costs of the scan-to-BIM process.

  • The holistic value of generative modelling allows experts to create digital worlds able to faithfully and accurately represent the detected reality and improve new immersive environments for Virtual Reality (VR) and Augmented Reality (AR) projects.

  • Immersive environments are created with a mixture of the latest generation software and hardware, allowing users to discover the hidden historical values of built heritage with new levels of interactivity and information.


Download data is not yet available.

Author Biographies

Fabrizio Banfi, Politecnico di Milano

Department of Architecture, Built Environment and Construction Engineering

Raffaella Brumana, Politecnico di Milano

Department of Architecture, Built Environment and Construction Engineering

Chiara Stanga, Politecnico di Milano

Department of Architecture and Urban Studies


Attar, R., Hailemariam, E., Glueck, M., Tessier, A., McCrae, J., & Khan, A. (2010). BIM-based building performance monitor. Invited Video at Symposium on Simulation for Architecture and Urban Design (SimAUD) 2010. Orlando, FL, USA. Retrieved from https://www.autodeskresearch.com/publications/bimdashboardvideo https://doi.org/10.1145/1878537.1878742

Azhar, S. (2011). Building Information Modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and management in engineering, 11(3), 241–252. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127

Banfi, F. (2016). Building Information Modelling–A novel parametric modeling approach based on 3D surveys of historic architecture. In Euro-Mediterranean Conference (pp. 116–127). Cham: Springer. https://doi.org/10.1007/978-3-319-48496-9_10

Banfi, F. (2017). BIM orientation: grades of generation and information for different type of analysis and management process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W5), 57–64. 10.5194/isprs-archives-XLII-2-W5-57-2017

Banfi, F. (2019). Holistic generative modeling process for HBIM (Doctoral dissertation, Politecnico di Milano, Italy).

Banfi, F., Chow, L., Ortiz, M. R., Ouimet, C., & Fai, S. (2018). Building Information Modeling for cultural heritage: The management of generative process for complex historical buildings. In M. Ioannides, E. Fink, R. Brumana, P. Patias, A. Doulamis, J. Martins, M. Wallace (Eds.), Digital Cultural Heritage (pp. 119–130). Cham: Springer. https://doi.org/10.1007/978-3-319-75826-8_10

Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71–87. https://doi.org/10.1016/j.simpat.2015.06.004

Blanco-Pons, S., Carrión-Ruiz, B., Lerma, J. L., & Villaverde, V. (2019). Design and implementation of an augmented reality application for rock art visualization in Cova dels Cavalls (Spain). Journal of Cultural Heritage. https://doi.org/10.1016/j.culher.2019.03.014

Bonavita, A. (2004). Pellegrino Tibaldi a Milano: i lavori alla cupola e al coro della basilica di Sant’Ambrogio. Arte Lombarda,140(1), 89–91.

Bradley, A., Li, H., Lark, R., & Dunn, S. (2016). BIM for infrastructure: An overall review and constructor perspective. Automation in Construction, 71, 139–152. https://doi.org/10.1016/j.autcon.2016.08.019

Brumana, R., Condoleo, P., Grimoldi, A., & Previtali, M. (2019). Towards a semantic based hub platform of vaulted systems: HBIM Meets A GeoDB. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W11), 301–308. https://doi.org/10.5194/isprs-archives-XLII-2-W11-301-2019

Brumana, R., Condoleo, P., Grimoldi, A., Banfi, F., Landi, A. G., Previtali, M., (2018a). HR LOD based HBIM to detect influences on geometry and shape by stereotomic construction techniques of brick vaults. Applied Geomatics, 10(4), 529–543. https://doi.org/10.1007/s12518-018-0209-3

Brumana, R., Condoleo, P., Grimoldi, A., Landi, A. G., Attico, D., Turrina, A., & Banfi, F. (2018b). HBIM Feeding Open Access Vault Inventory Through GeoDB HUB. In M. Ioannidess, E. Fink, R. Brumana, P. Patias, A. Doulamis, J. Martins, M. Wallace (Eds.), Digital Heritage (pp. 27–38). Cham: Springer. https://doi.org/10.1007/978-3-030-01762-0_3

Brumana, R., Della Torre, S., Previtali, M., Barazzetti, L., Cantini, L., Oreni, D., & Banfi, F. (2018c). Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): surveying, preservation, site intervention—the Basilica di Collemaggio (L’Aquila). Applied Geomatics, 10(4), 545–567. https://doi.org/10.1007/s12518-018-0233-3

Cabrelles, M., Blanco-Pons, S., Carrión-Ruiz, B., & Lerma, J. L. (2018). From multispectral 3D recording and documentation to development of mobile apps for dissemination of cultural heritage. In T. Levy, I. Jones (Eds.), Cyber-Archaeology and Grand Narratives (pp. 67–90). Cham: Springer. https://doi.org/10.1007/978-3-319-65693-9_5

Cassina, F. (1844). Le fabbriche più cospicue di Milano. Milan: Domenico Pedrinelli (book consulted at the Historical Library, Politecnico di Milano).

Castellazzi, G., D'Altri, A., Bitelli, G., Selvaggi, I., & Lambertini, A. (2015). From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure. Sensors, 15(8), 18360–18380. https://doi.org/10.3390/s150818360

De Dartein, F. (1865-82). Etude sur l'architecture lombarde et sur les origines de l'architecture romano-bizantine. Paris: Dunod (book consulted at the Historical Library, Politecnico di Milano).

Degli Abbati, S., D'Altri, A. M., Ottonelli, D., Castellazzi, G., Cattari, S., de Miranda, S., & Lagomarsino, S. (2019). Seismic assessment of interacting structural units in complex historic masonry constructions by nonlinear static analyses. Computers & Structures, 213, 51–71. https://doi.org/10.1016/j.compstruc.2018.12.001

Gatti Perrer, M. L. (1995). Il tempio ininterrotto. Milan: Vita e Pensiero.

Georgopoulos, A., (2018). Contemporary Digital Technologies at the Service of Cultural Heritage. In B. Chanda, S. Chaudhuri, S. Chaudhury (Eds.), Heritage Preservation (pp. 1–20). Singapore: Springer. https://doi.org/10.1007/978-981-10-7221-5_1

Gusmeroli, G., & Schiantarelli, G., (2014). From laser clouds to BIM and finite element analysis: the case study of Castel Masegra (Master thesis, Politecnico di Milano, Italy).

Ioannides, M., Magnenat-Thalmann, N., & Papagiannakis, G. (Eds.) (2017). Mixed Reality and Gamification for Cultural Heritage. Cham: Springer. https://doi.org/10.1007/978-3-319-49607-8

Korumaz, M., Betti, M., Conti, A., Tucci, G., Bartoli, G., Bonora, V., Güleç Korumaz, A., & Fiorini, L. (2017). An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. A minaret case study. Engineering Structures, 153(15), 224–238. https://doi.org/10.1016/j.engstruct.2017.10.026

Kumar, S. S., & Cheng, J. C. (2015). A BIM-based automated site layout planning framework for congested construction sites. Automation in Construction, 59, 24–37. https://doi.org/10.1016/j.autcon.2015.07.008

Lai, Z., Hu, Y. C., Cui, Y., Sun, L., & Dai, N. (2017). Furion: Engineering high-quality immersive virtual reality on today's mobile devices. Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking (pp. 409-421). Snowbird, Utah, USA. https://doi.org/10.1145/3117811.3117815

Landriani, G. (1889). La basilica ambrosiana fino alla sua trasformazione in chiesa lombarda a volte. Milan: Hoepli.

Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499–507. https://doi.org/10.1016/j.jas.2009.10.011

Lusuardi Siena, S. (1997). Ambrogio, il costruttore sapiente. In M. Rizzi, C. Pasini, M. P. Rossignani (Eds.), La città e la sua memoria: Milano e la tradizione di Sant’Ambrogio (pp. 34–35). Milan: Electa.

Mazzetti, P., Latre, M. Á., Ernst, J., Brumana, R., Brauman, S., Nativi, S. ( 2015). Virtual hubs for facilitating access to open data. EGU General Assembly Conference held 12-17 April, 2015 in Vienna, Austria.

Obidah, R., & Bein, D. (2019). Game based learning using unreal engine. In S. Latifi (Eds.), 16th International Conference on Information Technology-New Generations (pp. 513–519). Cham: Springer. https://doi.org/10.1007/978-3-030-14070-0_72

Oreni, D., Della Torre, S., Brumana, R., & Banfi, F. (2017). Disegno e modellazione parametrica per la conservazione di un edificio monumentale danneggiato da un evento sismico. Dal rilievo al cantiere. ANANKE Speciale Geores 2017, 153–158.

Oreni, D., Brumana, R., Della Torre, S., Banfi, F., & Previtali, M. (2014). Survey turned into HBIM: the restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L'Aquila). ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5), 267–273. https://doi.org/10.5194/isprsannals-II-5-267-2014

Patetta, L. (2001). Bramante e la sua cerchia a Milano e in Lombardia 1480-1500. Milan: Skira.

Peroni, A. (1987). Tradizione e innovazione in S. Ambrogio romanico. In C. Bertelli (Eds.), Il Millennio Ambrosiano, (pp. 156–172). Milan: Electa.

Piegl, L., & Tiller, W. (2012). The NURBS book. Springer Science & Business Media. Cham: Springer.

Previtali, M., Barazzetti, L., Banfi, F., & Roncoroni, F. (2019). Informative content models for infrastructure load testing management: the Azzone Visconti Bridge in Lecco. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W11), 995–1001. https://doi.org/10.5194/isprs-archives-XLII-2-W11-995-2019

Reggiori, F. (1949). Superstantia Sancti Abrosii Mediolani. Milan: A. Faccioli.

Rossi, F. M. (1884). Cronaca dei ristauri e delle scoperte fatte nell’insigne basilica di S. Ambrogio dall’anno 1857 al 1876. Milan: Tipografia di S. Giuseppe.

Santana Quintero, M., Blake, B., Eppich, R., & Ouimet, C. (2008). Heritage documentation for conservation: partnership in learning. In 16th ICOMOS General Assembly and International Symposium: ‘Finding the spirit of place – between the tangible and the intangible’. Quebec, Canada.

Stanga, C., Spinelli, C., Brumana, R., Oreni, D., Valente, R., Banfi, F. (2017). A N-D virtual notebook about the Basilica of S. Ambrogio in Milan: information modeling for the communication of historical phases subtraction process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W5), 653–660. https://doi.org/10.5194/isprs-archives-XLII-2-W5-653-2017

Statham, N. (2019). Scientific rigour of online platforms for 3D visualization of heritage. Virtual Archaeology Review, 10(20), 1–16. https://doi.org/10.4995/var.2019.9715

Summa, A. (1995). La scultura medioevale nella basilica di S. Ambrogio. In M. L. Gatti Perrer (Eds.), La basilica di S. Ambrogio: il tempio ininterrotto. Milan: Vita e pensiero.

Tucci, G., & Lerma, J. L. (2018). Special Issue GEORES2017. Geomatics and restoration: Conservation of cultural heritage in the Digital Era. Preface. Applied Geomatics, 10(4), 277–278. https://doi.org/10.1007/s12518-018-0247-x

Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings – Literature review and future needs. Automation in construction, 38, 109–127. https://doi.org/10.1016/j.autcon.2013.10.023

Wetzel, E. M., & Thabet, W. Y. (2015). The use of a BIM-based framework to support safe facility management processes.Automation in Construction, 60, 12–24. https://doi.org/10.1016/j.autcon.2015.09.004




How to Cite

Banfi, F., Brumana, R., & Stanga, C. (2019). Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality. Virtual Archaeology Review, 10(21), 14–30. https://doi.org/10.4995/var.2019.11923



Special Issue: Informative Models and Systems for Virtual Museums