SfM photogrammetry applied to taxonomic determination of archaeofauna remains





photogrammetry, virtual archaeology, 3D modelling, zooarchaeology, camelids


Photogrammetry has recently been incorporated into archaeological research, replacing much more expensive techniques while still generating high resolution results. This technique converts two dimensional (2D) images into three-dimensional (3D) models, allowing for the complex analysis of geometric and spatial information. It has become one of the most used methods for the 3D recording of cultural heritage objects. Among its possible archaeological uses are: digitally documenting an archaeological dig at low cost, aiding the decision-making process (Dellepiane et al., 2013); spatial surveying of archaeological sites; 3D model generation of archaeological objects and digitisation of archaeological collections (Adami et al., 2018; Aparicio Resco et al., 2014; Cots et al., 2018; Iturbe et al., 2018; Moyano, 2017).The objective of this paper is to show the applicability of 3D models based on SfM (Structure from Motion) photogrammetry for archaeofauna analyses. We created 3D models of four camelid (Lama glama) bone elements (skull, radius-ulna, metatarsus and proximal phalange), aiming to demonstrate the advantages of 3D models over 2D osteological guides, which are usually used to perform anatomical and systematic determination of specimens.Photographs were taken with a 16 Megapixel Nikon D5100 DSLR camera mounted on a tripod, with the distance to the object ranging between 1 and 3 m and using a 50mm fixed lens. Each bone element was placed on a 1 m tall stool, with a green, high contrast background. Photographs were shot at regular intervals of 10-15º, moving in a circle. Sets of around 30 pictures were taken from three circumferences at vertical angles of 0º, 45º and 60º. In addition, some detailed and overhead shots were taken from the dorsal and ventral sides of each bone element. Each set of dorsal and ventral photos was imported to Agisoft Photoscan Professional. A workflow (Fig. 4) of alignment, tie point matching, high resolution 3D dense point cloud construction, and creation of a triangular mesh covered with a photographic texture was performed. Finally the dorsal and ventral models were aligned and merged and the 3D model was accurately scaled. In order to determine accuracy of the models, linear measurements were performed and compared to a digital gauge measurement of the physical bones, obtaining a difference of less than 0.5 mm.Furthermore, five archaeological specimens were selected to compare our 3D models with the most commonly used 2D camelid atlas (Pacheco Torres et al., 1986; Sierpe, 2015). In the particular case of archaeofaunal analyses, where anatomical and systematic determination of the specimens is the key, digital photogrammetry has proven to be more effective than traditional 2D documentation methods. This is due to the fact that 2D osteological guides based on drawings or pictures lack the necessary viewing angles to perform an adequate and complete diagnosis of the specimens. Using new technology can deliver better results, producing more comprehensive information of the bone element, with great detail and geometrical precision and not limited to pictures or drawings at particular angles. In this paper we can see how 3D modelling with SfM-MVS (Structure from Motion-Multi View Stereo) allows the observation of an element from multiple angles. The possibility of zooming and rotating the models (Figs. 6g, 6h, 7d, 8c) improves the determination of the archaeological specimens.Information on how the 3D model was produced is essential. A metadata file must include data on each bone element (anatomical and taxonomic) plus information on photographic quantity and quality. This file must also contain the software used to produce the model and the parameters and resolution of each step of the workflow (number of 3D points, mesh vertices, texture resolution and quantification of the error of the model). In short, 3D models are excellent tools for osteological guides.


Download data is not yet available.

Author Biographies

Gabriela Lorenzo, Universidad Nacional de La Plata

Laboratorio de Análisis Cerámico, Facultad de Ciencias Naturales y Museo

Luciano Lopez, Universidad Nacional de La Plata

Instituto de Recursos Minerales (INREMI), Facultad de Ciencias Naturales y MuseoConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Reinaldo A. Moralejo, Universidad Nacional de La Plata

División Arqueología, Museo de La Plata.Facultad de Ciencias Naturales y MuseoConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Luis M. del Papa, Universidad Nacional de La Plata

Cátedra de Anatomía Comparada, Facultad de Ciencias Naturales y MuseoConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET)


Adami, A., Fassi, F., Fregonese, L., & Piana, M. (2018). Image-based techniques for the survey of mosaics in the St Mark's Basilica in Venice. Virtual Archaeology Review, 9(19), 1-20. https://doi.org/10.4995/var.2018.9087

Aparicio Resco, P., Carmona Barrero, J. D., Fernández Díaz, M., & Martín Serrano, P. M. (2014). Fotogrametría involuntaria: rescatando información geométrica en 3D de fotografías de archivo. Virtual Archaeology Review, 5(10), 11-20. https://doi:org/10.4995/var.2014.4205

Cardich, A., & Izeta, A. D. (1999-2000). Revisitando Huango (Perú). Análisis cuantitativos aplicados a restos de Camelidae del Pleistoceno tardío. Anales de Arqueología y Etnología, 54-55, 29-46.

Cartajena, I., Nuñez, L., & Grosjean, M. (2007). Camelid domestication on the western slope of the Puna de Atacama, northern Chile. Anthropozoologica, 42(2), 155-173.

Conte, B., & Izeta, A. D. (2018). Métodos 3D aplicados en la arqueología. In: Congreso Nacional de Arqueometría, (pp. 422-426). San Miguel de Tucumán y Amaicha del Valle, Argentina.

Cots, I., Vilà, J., Diloli, J., Ferré, R., & Bricio, L. (2018). Virtual archaeology: from archaeological excavation to the management and diffusion of heritage. Les Cases de la Catedral (Tortosa) and the protohistorical settlement of La Cella (Salou), Tarragona. Virtual Archaeology Review, 9(19), 102-113. https://doi.org/10.4995/var.2018.9754

de Lamo, D. A. (2011). Camélidos sudamericanos. Historia, usos y sanidad animal. Buenos Aires: Servicio Nacional de Sanidad y Calidad Agroalimentaria, Senasa.

del Papa, L. M. (2012). Una aproximación al estudio de los sistemas de subsistencia a través del análisis arqueofaunístico en un sector de la cuenca del Río Dulce y cercanías a la Sierra de Guasayán [An approach to the study of subsistence systems through archaeofaunal analysis in a sector of the Dulce river basin and Guasayán mountain range] (Doctoral thesis Universidad Nacional de La Plata, Argentina). Retrieved from http://sedici.unlp.edu.ar/handle/10915/24533

del Papa, L. M. (2015). First approach to study the presence of domesticated camelids (Lama glama) in the Chaco-Santiago region, a marginal zone of the South Central Andes. International Journal of Osteoarchaeology, 25, 45-60. https://doi.org/10.1002/oa.2262

del Papa, L. M., Togo, J., & De Santis, L. J. M. (2013). Primera aproximación a la tafonomía de la región Chaco-Santiagueña. Sitio Maquijata, Santiago del Estero. En A. D. Izeta, & G. L. Mengoni Goñalons (Eds.), De la Puna a las Sierras: Avances y Perspectivas en Zooarqueología Andina (pp. 17-38). Oxford: BAR International Series 2564, South American Archaeology Series.

Dellepiane, M., Dell’Unto, N., Callieri, M., Lindgren, S., & Scopigno, R. (2013). Archeological excavation monitoring using dense stereo matching techniques. Journal of Cultural Heritage, 14(3), 201-210. https://doi.org/10.1016/j.culher.2012.01.011

Elkin, D. (1995). Volume Density of South American Camelid Skeletal Parts. International Journal of Osteoarcbaeology, 5, 29-37. https://doi.org/10.1002/oa.1390050104

Elkin, D. C. (1996). Arqueozoología de Quebrada Seca 3: Indicadores de Subsistencia Humana Temprana en la Puna Meridional Argentina. [Archaeozoology of Quebrada Seca 3: Indicators of Early Human Subsistence in the Southern Puna of Argentina] (Doctoral thesis, Facultad de Filosofía y Letras, Universidad Nacional de Buenos Aires, Argentina).

Evin, A., Souter, T., Hulme-Beaman, A., Ameen, C., Allen, R., Viacava, P., … Dobney, K. (2016). The use of close-range photogrammetry in zooarchaeology: Creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Science: Reports, 9, 87–93. https://doi.org/10.1016/j.jasrep.2016.06.028

Franklin, W. L. (1982). Biology, ecology and relationship to man of the South American Camelids. En M. A. Mares, & H. H. Genoways (Eds.). Mammalian Biology in South America (pp. 457-489). Pittsburg: Ser. Pymatuning Lab. of Ecol., University of Pittsburg Press.

Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362–1376. https://doi.org/10.1109/TPAMI.2009.161

Grant J. (2010). Aportes de distintas técnicas osteométricas para la identificación interespecífica de camélidos sudamericanos. En M. A. Gutiérrez, M. De Nigris, P. M. Fernández, M. Giardina, A. Gil, A. Izeta, G. Neme, & H. Yacobaccio (Eds.), Zooarqueología a Principios del siglo XXI: Aportes, metodologías y casos de estudio (pp. 17-28). Buenos Aires: Ediciones del Espinillo.

Green, S., Bevan, A., & Shapland, M. (2014). A comparative assessment of structure from motion methods for archaeological research. Journal of Archaeological Science, 46(1), 173–181. https://doi.org/10.1016/j.jas.2014.02.030

Grosman, L., Smikt, O., & Smilansky, U. (2008). On the application of3-D scanning technology for the documentation and typology of lithic artifacts. Journal of Archaeological Science, 35, 3101–3110 http://dx.doi.org/10.1016/j.jas.2008.06.011

Iturbe, A., Cachero, R., Cañal, D., & Martos, A. (2018). Virtual digitization of caves with parietal Paleolithic art from Bizkaia. Scientific analysis and dissemination through new visualization techniques. Virtual Archaeology Review, 9(18), 57-65. https://doi.org/10.4995/var.2018.7579

Kaufmann, C. A. (2009). Estructura de edad y sexo en guanaco. Estudios actualísticos y arqueológicos en Pampa y Patagonia. Buenos Aires: Sociedad Argentina de Antropología.

Kent, J. D. (1982). The Domestication and exploitation of South American camelids: methods of analysis and their application to circum-lacustrine archaeological sites in Bolivia and Peru (Tesis doctoral, University: St. Louis, Washington).

Lachat, E., Macher, H., Landes, T., & Grussenmeyer, P. (2015). Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling. Remote Sensing, 7, 13070-13097. https://doi.org/10.3390/rs71013070

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision (Vol. 2, pp. 1150–1157). Kerkyra, Greece https://doi.org/10.1109/ICCV.1999.790410

Martínez Huerta, J. C. (2015). Fotogrametría digital: Un complemento en el registro arqueológico dentro del Proyecto Arqueológico La Quemada (2013-2014). Instituto Nacional de Antropología e Historia, Zacatecas. Retrieved from: http://www.pcnt.inah.gob.mx/pdf/14289636792.pdf

Martínez, G., & Gutiérrez, M. A. (2004). Tendencias en la explotación humana de la fauna durante el Pleistoceno final y Holoceno en la Región Pampeana (Argentina). En G. Mengoni Goñalons (Ed.), Zooarchaeology of South America, (pp. 81-98). Oxford: BAR Internacional Series.

Maté González, M. A., Yravedra, J., González-Aguilera, D., Palomeque-González, J., & Domínguez-Rodrigo, M. (2015). Micro-photogrammetric characterization of cut marks on bones. Journal of Archaeological Science, 62, 128-142. https://doi.org/10.1016/j.jas.2015.08.006

Medina, M. E., Pastor, S., & Rivero, D. E. (2014). Osteometría y diferenciación de especies de camélidos en sitios arqueológicos de las Sierras Centrales (Argentina). Tendencias, problemas y perspectivas. Intersecciones en Antropología, 15, 339-351.

Menegaz, A., Salemme, M., & Ortiz Jaureguizar, E. (1988). Una propuesta de sistematización de los caracteres morfométricos de los metapodios y las falanges de Camelidae. En N. Ratto, & A. Haber (Eds.). De procesos, contextos y otros huesos (pp. 53-64). Buenos Aires: Facultad de Filosofía y Letras, Universidad de Buenos Aires.

Mengoni Goñalons, G. L. (1995). Importancia socio-económica del guanaco en el período precolombino. In S. Puig (Ed.). Técnicas para el manejo del guanaco (pp. 13-25). Mendoza: UICN.

Mengoni Goñalons, G. L., & Yacobaccio, H. D. (2006). The Domestication of South American Camelids. A View from the South-Central Andes. En M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.). Documenting Domestication: New Genetic and Archaeological Paradigms (pp. 228-244). Berkeley: University of California Press.

Mignino, J., Izeta, A., Conte, B., & Herrera, B. (2018). 3D photogrammetric models based on Hystricognath rodents. Upper Ongamira valley, northern Córdoba province, central Argentina. In: 13th International Conference of Archaeozoology, 3-7 de septiembre de 2018, Ankara, Turquía.

Miotti, L. (1998). Zooarqueología de la Meseta Central y Costa de Santa Cruz. Un enfoque de las estrategias adaptativas aborígenes y los paleoambientes. Revista del Museo de Historia Natural de San Rafael, Tomo X (1-4).

Moralejo, R. A., Gobbo, D., Del Cogliano, D., & Pinto, L. (2018). Aplicación de tecnología LIDAR en El Shincal de Quimivil, Londres, Catamarca. Arqueología, 24(3), 165-184. Retrieved from: http://revistascientificas.filo.uba.ar/index.php/Arqueologia/article/view/5386

Moyano, G. (2017). El uso de fotogrametría digital como registro complementario en arqueología. Alcances de la técnica y casos de aplicación. Comechingonia, 21(2), 333-350.

Niven, L., Steele, T. E., Finke, H., Gernat, T., & Hublin, J.-J. (2009). Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection. Journal of Archaeological Science, 36(9), 2018-2023. https://doi:org/10.1016/J.JAS.2009.05.021

Olivera, D. E. (1998). Cazadores y Pastores Tempranos de la Puna Argentina. En S. Ahlgren, A. Muñoz, S. Sjodin, & P. Stenborg (Eds.). Past and Present in Andean Prehistory and Early History (pp. 153-180). Goteborg: Etnologiska Studier 42. Etnografiska Museet.

Pacheco Torres, V. R., Altamirano Enciso, A., & Guerra Porras, E. (1986). The Osteology of South American camelids. Los Angeles: Archaeological Research Tools 3. Institute of Archaeology, University of California.

Porter, S. T., Roussel, M., & Soressi, M. (2016). A simple photogrammetry rig for the reliable creation of 3D artifact models in the field Lithic examples from the Early Upper Paleolithic Sequence of Les Cottés (France). Advances in Archaeological Practice, 4(1), 71-86. https://doi.org/10.7183/2326-3768.4.1.71

Salemme, M. C., Miotti, L. L., & Tonni E. P. (1988). La determinación sistemática de los mamíferos en el análisis arqueofaunístico. En N. Ratto, & A. Haber (Eds.). De procesos, contextos y otros huesos (pp. 65-75). Buenos Aires: Facultad de Filosofía y Letras, Universidad de Buenos Aires.

Seitz, S. M., Curless, S. M., Diebel, B., Scharstein, J., & Szeliski, R. (2006). A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Volume 1, pp. 519–528). New York, EEUU. https://doi:10.1109/CVPR.2006.19

Sholts, S. B., Flores, L., Walker, P. L., & Wärmländer, S. K. T. S. (2011). Comparison of coordinate measurement precision of different landmark types on human crania using a 3D laser scanner and a 3D digitiser: Implications for applications of digital morphometrics. International Journal of Osteoarchaeology, 21(5), 535–543. https://doi.org/10.1002/oa.1156

Sierpe, V. G. (2015). Atlas osteológico de guanaco (Lama guanicoe). Chile: Ediciones Universidad de Magallanes.

Stančić I., Musić J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement, 46(1), 716-726. https://dx.doi.org/10.1016/j.measurement.2012.09.010

Verhoeven, G., Doneus, M., Briese, C., & Vermeulen, F. (2012). Mapping by matching: A computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. Journal of Archaeological Science, 39(7), 2060–2070. https://doi.org/10.1016/j.jas.2012.02.022

Westoby, M. J., Brasington, J., Glasser, M. J., Hambrey, M. J., & Reynolds, J. M. (2012). Structure- from-motion photogrammetry: a low cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

Wheeler, J. (1984). On the origin and early development of pastoralism in the Andes. In J. Clutton-Brock, & C. Grigson (Eds.). Animals and archaeology 3: Early herders and their pocks (pp. 395-410). Oxford: BAR International Series.

Wheeler, J. (1995). Evolution and present situation of the South American Camelidae. Biological Journal of the Linnean Society, 54, 271-295. https://doi.org/10.1016/0024-4066(95)90021-7

Wheeler Pires-Ferreira, J., Pires-Ferreira, E., & Kaulicke, P. (1976). Preceramic animal utilization in the Central Peruvian Andes. Science, 194, 483-490. https://doi.org/10.1126/science.194.4264.483

Wing, E. (1972). Utilization of animal resources in the Peruvian Andes. In S. Izumi, & K. Terada (Eds.). Andes 4: Excavations at Kotosh, Perú (pp. 327-352). Tokyo: University of Tokyo Press.

Wu, C. (2013). Towards linear-time incremental structure from motion. Proceedings - 2013 International Conference on 3D Vision, 3DV 2013, 127-134. https://doi.org/10.1109/3DV.2013.25

Yacobaccio, H. D. (2010). Osteometría de llamas (Lama glama L.) y sus consecuencias arqueológicas. In M. A. Gutiérrez, M. De Nigris, P. M. Fernández, M. Giardina, A. Gil, A. Izeta, G. Neme, & H. Yacobaccio (Eds.). Zooarqueología a principios del siglo XXI: Aportes teóricos, metodológicos y casos de estudio (pp. 65-75). Buenos Aires: Ediciones del Espinillo.



How to Cite

Lorenzo, G., Lopez, L., Moralejo, R. A., & del Papa, L. M. (2019). SfM photogrammetry applied to taxonomic determination of archaeofauna remains. Virtual Archaeology Review, 10(20), 70–83. https://doi.org/10.4995/var.2019.11094