Historical military heritage: 3D digitisation of the Nasri sword attributed to Ali Atar
DOI:
https://doi.org/10.4995/var.2019.10028Keywords:
virtual heritage, bladed weapon, photogrammetry, 3D model, plotting, web visualisationAbstract
Ali Atar, Warden of Loja and Lord of Zagra, was born around 1393. He was one of the principal military leaders of the Nasrid period and came to join the Grenadine Royal House by marrying his daughter Moraima with Boabdil, the last King of Granada. He died in the battle of Lucena in 1483, where one of the magnificent jineta swords of Andalusí manufacture was snatched, which is now conserved and located in the collection of the Toledo Army Museum (MUSEJE). The MUSEJE collections house important scientific, technical, historical and artistic heritage. The historical military heritage needs for its protection, preservation and valorisation the adaptation of new resources and benefit from the usage of new digital technologies. The physical conservation is no longer enough for a resource as valuable as cultural heritage; it needs to be complemented with a comprehensive digital preservation in all its forms, being essential and necessary for its proper safeguard. The virtual era currently emphasizes its presence in the digital documentation, preservation and dissemination of our cultural heritage. In particular, we have oriented and activated it on the historical military heritage, knowledgeable and narrator of our history, of its treasures, and of their relationship within the society as important representations of social and dynastic status. This paper is centred in the 3D digitisation by means of digital photogrammetry and 3D modelling of a historical military weapon. Aided by photogrammetry and information and communication technologies (ICT), we will achieve precise geometric documentation and 3D models that are geared towards research, education, diffusion and the preservation of heritage as important and unknown as is historical military heritage. Photogrammetry gives us the opportunity to bring to light the Ali Atar’s sword, one of the most relevant artistic manifestations belonging to the Nasri armament (Fig. 1, Table 1). The multi-view close-range photogrammetry is key to virtualise this jewel and also to contribute to the democratisation of the museum through the web dissemination of its content in a personalized way.
Materials such as metals and precious stones, and gold techniques present in the Andalusian weapon required a particular photogrammetric data acquisition using a light booth and polarizing filter (Fig. 10), as suggested for the latter by (Guidi, Gonizzi, & Micoli, 2014). This setup brought a substantial improvement when dealing with highly reflective materials such as the metallic blade of Ali Atar's jineta sword. The use of the polarising filter attenuated the light that affects and reflects in the piece, benefiting both data acquisition and processing to deliver 3D models. We offered some results ready to safeguard, preserve and disseminate the jineta sword as a high-quality 3D model (Fig. 13), with submillimetre precision from which to obtain all the necessary metric deliverables. From the dense point cloud, two meshes were delivered: i) a homogeneous high resolution mesh keeping all the original features for archiving, conservation and research, and ii) a medium resolution mesh for web-based visualisation and dissemination. The aim was to achieve a detailed geometric documentation as well as complete and accurate 3D models (Fig. 29) for web repositories (https://skfb.ly/ZzzA), orthoimages (Figs. 30 and 31) that allow us to plot from CAD programs all the ornamental and decorative information of the piece (Figs. 32 and 33). In addition, we present some results related to monitoring and evaluation of changes in the state of conservation of the piece (Figs. 34, 35 and 36), extending the survey to preventive conservation studies.
This research proves the value of geometric documentation techniques for the democratisation of museums. It contributes to improving the research processes, opening a new line of study. From this point we can rebuild the past through the virtuality, being able to mark and confirm historical hypotheses. These techniques offer the chance to give value to relevant and singular pieces in and out of museums. Both heritage and virtual archaeology are fundamental pillars to delve into the future of education and knowledge.
Downloads
References
Barazzetti, L., Remondino, F., Scaioni, M., & Brumana, R. (2010). Fully automatic UAV image-based sensor orientation. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, XXXVIII-Part 5. Retrieved from http://www.isprs.org/proceedings/XXXVIII/part1/12/12_02_Paper_75.pdf
British-Museum. (2018). The British Museum on Sketchfab - Sketchfab. Retrieved May 28, 2018, from https://sketchfab.com/britishmuseum
Chiabrando, F., D’Andria, F., Sammartano, G., & Spanò, A. (2018). UAV photogrammetry for archaeological site survey. 3D models at the Hierapolis in Phrygia (Turkey). Virtual Archaeology Review, 9(18), 28. https://doi.org/10.4995/var.2018.5958
Denard, H. (2009). The London Charter for the Computer-Based Visualisation of Cultural Heritage. Preamble Objectives Principles. The London Charter for the Computer-Based Visualisation of Cultural Heritage, 13. Retrieved from http://www.londoncharter.org/fileadmin/templates/main/docs/london_charter_2_1_en.pdf
Doneus, M., Verhoeven, G., Fera, M., Briese, C., Kucera, M., & Neubauer, W. (2011). From deposit to point cloud – A study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations. Geoinformatics FCE CTU, 6(0), 81–88. https://doi.org/10.14311/gi.6.11
Ducke, B., Score, D., & Reeves, J. (2011). Multiview 3D reconstruction of the archaeological site at Weymouth from image series. Computers & Graphics, 35(2), 375–382. https://doi.org/10.1016/J.CAG.2011.01.006
Dueñas, G. (2007). Tesoros del Museo del Ejército. In M. Rubio, C. García, & M. Arias (Eds.). Tesoros del Museo del Ejército (pp. 191–206). Ollero y Ramos.
Dueñas, G. (2014). Las Armas del Greco. In G. Dueñas & C. Colis (Eds.), Las armas del Greco (p. 197). Retrieved from https://publicaciones.defensa.gob.es/las-armas-del-greco.html
Forte, M. (2010). Cyber-archaeology. (M. Forte, Ed.). Oxford, England: Archaeopress.
Forte, M. (2011). Cyber-Archaeology : Notes on the simulation of the past. Virtual Archaeology Review, 2(4), 7–18. https://doi.org/10.4995/var.2011.4543
Gant, M. L., & Rus, F. J. (2016). Atalaya3D: el portal virtual de patrimonio de las universidades andaluzas. Revista Ph, 90, 15–16. Retrieved from http://www.iaph.es/revistaph/index.php/revistaph/article/view/3809
Gil-Melitón, M., & Lerma, J. L. (2016). Nuevas puertas virtuales al mundo de la preservación y difusión del patrimonio histórico militar. Un compromiso por el futuro de la investigación y el conocimiento. In 8th International congress on archaeology, computer graphics, cultural heritage and innovation (pp. 468–471). Valencia: Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/96582
Guidi, G., Gonizzi, S., & Micoli, L. L. (2014). Image pre-processing for optimizing automated photogrammetry performances. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5, 145–152. https://doi.org/10.5194/isprsannals-II-5-145-2014
Historic England. (2017). Photogrammetric Applications for Cultural Heritage. Guidance for Good Practice, 128 p. Retrieved from https://content.historicengland.org.uk/images-books/publications/photogrammetric-applications-for-cultural-heritage/heag066-photogrammetric-applications-cultural-heritage.pdf/
Iturbe, A., Cachero, R., Cañal, D., & Martos, A. (2018). Digitalización de cuevas con arte paleolítico parietal de Bizkaia. Análisis científico y divulgación mediante nuevas técnicas de visualización. Virtual Archaeology Review, 9(18), 57–65. https://doi.org/10.4995/var.2018.7579
Lerma, J. L., Cabrelles, M., Navarro, S., & Seguí, A. E. (2011). La documentacion patrimonial mediante sensores de imagen o de barrido láser. Documentación Gráfica Del Patrimonio, 108–117. Retrieved from http://gifle.webs.upv.es/pdfs/DocPatrimonial ImagenLáser2011.pdf
Lodeiro, J. M. (2010). La Documentación gráfica en el IPCE. Documentación Gráfica Del Patrimonio, 8–17. Retrieved from https://es.calameo.com/read/0000753358b142b1c934c
London-Charter. (2017). The London Charter for the computer-based visualisation of Cultural Heritage. Retrieved April 23, 2018, from http://www.londoncharter.org/
López-Menchero, V. M. (2013). International Guidelines for Virtual Archaeology: The Seville Principles. In C. Corsi, B. Slapšak, & F. Vermeulen (Eds.), Good Practice in Archaeological Diagnostics (pp. 269–283). Cham, Switzerland: Springer, Cham. https://doi.org/10.1007/978-3-319-01784-6_16
Makariou, S., & Bernus-Taylor, M. (2000). Memorias do imperio Arabe. Santiago de Compostela: Santiago de Compostela: Auditorio de Galicia.
MAN. (2018). Museo Arqueológico Nacional on Sketchfab - Sketchfab. Retrieved May 28, 2018, from https://sketchfab.com/man
Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. https://doi.org/10.1007/s12518-013-0120-x
Plets, G., Verhoeven, G., Cheremisin, D., Plets, R., Bourgeois, J., Stichelbaut, B., … De Reu, J. (2012). The deteriorating preservation of the Altai rock art: Assessing three-dimensional image-based modelling in rock art research and management. Rock Art Research, 29(2), 139–156.
Principios-Sevilla. (2016). Forum Internacional de Arqueología Virtual / International Forum of Virtual Archaeology Borrador Final Forum Internacional de Arqueología Virtual / International Forum of Virtual Archaeology, 10. Retrieved from http://smartheritage.com/wp-content/uploads/2016/06/PRINCIPIOS-DE-SEVILLA.pdf
Remondino, F., & El-hakim, S. (2006). Image-based 3D modelling: A review. Photogrammetric Record, 21(115), 269–291. https://doi.org/10.1111/j.1477-9730.2006.00383.x
Santos, P., Ritz, M., Fuhrmann, C., & Fellner, D. (2017). 3D mass digitization: a milestone for archeological documentation. Virtual Archaeology Review, 8(16), 1–11. https://doi.org/10.4995/var.2017.6321
Sapirstein, P. (2016). Accurate measurement with photogrammetry at large sites. Journal of Archaeological Science, 66, 137–145. https://doi.org/10.1016/J.JAS.2016.01.002
Sikh-Museum. (2017). 3D Modelling of Sikh artefacts | Sikh Museum Initiative. Retrieved January 25, 2017, from http://www.sikhmuseum.org.uk/portfolio/3d-modelling-of-sikh-artefacts/
Slama, C., Theurer, C., & Henriksen, W. (1980). Manual of photogrammetry. American Society of Photogrammetry.
Stylianidis, E., & Remondino, F. (2016). 3D Recording, Documentation and Management of Cultural Heritage. (E. Stylianidis & F. Remondino, Eds.). Whittles Publishing. Retrieved from https://books.google.be/books?id=yLFXawEACAAJ
Suma, R., Stavropoulou, G., Stathopoulou, E. K., van Gool, L., Georgopoulos, A., & Chalmers, A. (2016). Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications. Virtual Archaeology Review, 7(15), 54–66. https://doi.org/10.4995/var.2016.6319
Torres, L. (1949). Ars Hispaniae. Madrid: Editorial Plus-ultra.
Waldhäusl, P., Ogleby, C. L., Lerma, J. L., & Georgopoulos, A. (2013). 3 X 3 Rules for Simple Photogrammetric Documentation of Architecture. Retrieved from http://cipa.icomos.org/wp-content/uploads/2017/02/CIPA__3x3_rules__20131018.pdf
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.