3D models from terrestrial photogrammetry in the estimation of forest inventory variables

A. de Eugenio, A. Fernández-Landa, S. Merino-de-Miguel

Abstract

The management of forest resources should be based on reliable measurements of individual standing trees. At the beginning, these measurements allow us to estimate equations and models, which in turn are used to be applied to similar individuals with the objective of estimate variables such as timber volume at plot or stand level. Traditionally, these measurements required the destruction of several standing trees. The present work intends the construction of three-dimensional models of standing trees by terrestrial photogrammetry. With this purpose, four plots were sampled in the MUP n°39 (Madrid) in each of which 5 representative trees were measured and photographed. For the measurement of standing trees, we used: tree caliper, Criterion RD1000 dendrometer and Vertex III hipsometer. The images were taken with a non-metric Canon IXUS 85 IS camera. Three-dimensional models were constructed from the images using VisualSFM software. Subsequently, measurements were made on these models using Meshlab software. The evaluation is performed by comparing the diameters measured on the 3D models with those obtained by other validated measurement methodology (using the Criterion RD1000 laser dendrometer). No significant differences were found between those measurements made with the Criterion and those made on the 3D models. Wood volume estimation of standing trees using photogrammetry is a sound alternative with potential for the next years.


Keywords

tree; photogrammetry; diameter; volume measurement; timber volume

Full Text:

PDF

References

Astrup, R., Ducey, M.J., Granhus, A., Ritter, T., Von Lüpke, N. 2014. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode Canadian Journal of Forest Research, 44(6), 666-676. https://doi.org/10.1139/cjfr-2013-0535

Balvanera, P. 2012. Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas, 21(1- 2), 136-147.

Chirici, G., McRoberts, R.E., Winter, S., Bertini, R., Brändli, U.B., Alberdi-Asensio, I., Bastrup-Birk, A., Rondeux, J., Barsoum, N., Marchetti, M. 2012. National Forest Inventory Contributions to Forest Biodiversity Monitoring. Forest Science, 58(1), 257-268. https://doi.org/10.5849/forsci.12-003

Cunliffe, A.M., Brazier, R.E., Anderson, K. 2016. Ultra-fine grain landscape-scale quatification of dryland vegetation structure with droneacquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129-143. https://doi.org/10.1016/j.rse.2016.05.019

De Araujo-Barbosa, C.C., Atkinson, P.M., Dearing, J.A. 2015. Remote sensing of ecosystem services: A systematic review. Ecological Indicators, 52, 430- 443. https://doi.org/10.1016/j.ecolind.2015.01.007

Diéguez-Aranda, U., Barrio, M., Castedo, F., RuizGonzález, A.D., Álvarez-Taboada, M.F., ÁlvarezGonzález, J.G., Rojo, A. 2003. Dendrometría. Madrid: Editorial Mundi-Prensa y Fundación Conde del Valle de Salazar.

European Environment Agency. European Environment Agency. 20 de diciembre de 2017, https://www. eea.europa.eu/data-and-maps/indicators/forest-firedanger-2/assessment

Fernandes, P., Luz, A., Loureiro, C., Ferreira-Godinho, P., Botelho, H. 2006. Fuel modelling and fire hazard assessment based on data from the Portuguese National Forest Inventory. Forest Ecology and Management, 234, supplement, S229. https://doi.org/10.1016/j.foreco.2006.08.256

Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A.H., Stahl, G. 2014. Adapting National Forest Inventories to changing requierements – the case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48(3), article id 1095. https://doi.org/10.14214/sf.1095

Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., Maltamo, M. 2008. Review of methods of smallfootprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing, 29(5), 1339-1366. https://doi.org/10.1080/01431160701736489

Liang, X., Hyyppä, J. 2013. Automatic Stem Mapping by Merging Several Terrestrial Laser Scans at the Feature and Decision Levels. Sensors, 13, 1614- 1634. https://doi.org/10.3390/s130201614

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006

Manín Castro, G., Barrio Anta, M., Díaz-Maroto, I.J. 2001. Tarifa de cubicación con clasificación de productos para Quercus robur L. en el norte de la provincia de Lugo. In: Proceedings of III Congreso Forestal Español, Granada, Spain, 25-28 September.

MAPAMA. Mapa Forestal de España. En Banco de Datos de la Naturaleza. 20 de diciembre de 2017, https://www.mapama.gob.es. Mikita, T., Janta, P., Surový, P. 2016. Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry. Forests, 7(8), 165, https://doi.org/10.3390/f7080165

Olofsson, K., Holmgren, J., Olsson, H. 2014. Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm. Remote Sensing, 6(5), 4323-4344. https://doi.org/10.3390/rs6054323

Rodríguez, F., Fernández, A. 2009. Herramientas de cubicación sin necesidad de apeo de árboles. Montes, 98, 83-99.

Vierling, L.A., Xu, Y., Eitel, J.U., Oldow, J.S. 2013. Shrub characterization using terrestrial laser scanning and implications for airborne LiDAR assessment. Canadian Journal of Remote Sensing, 38(6), 709-722. https://doi.org/10.5589/m12-057

Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., Vopěnka, P. 2016. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests, 7(3), 62. https://doi.org/10.3390/f7030062

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. ‘Structure-fromMotion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph. 2012.08.021

Wu, C. VisualSFM. A visual Structure from Motion System. 15 de diciembre de 2017, http://ccwu.me/vsfm.

Wulder, M. 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography, 22(4), 449-476. https://doi.org/10.1177/030913339802200402

Abstract Views

1856
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management
Md Abdul Mueed Choudhury, Ernesto Marcheggiani, Francesca Despini, Sofia Costanzini, Paolo Rossi, Andrea Galli, Sergio Teggi
Forests  vol: 11  issue: 11  first page: 1226  year: 2020  
doi: 10.3390/f11111226



 

This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet