AISA Eagle II hyperspectral data for carbonate geological mapping in a vegetated high relief area: a geologically orientated atmospheric correction

J. Buzzi, E. Costa, A. Riaza, O. Fernández, D. García-Sellés, J. Corbera


Carbonated rocks are crucial targets for oil exploration, outcropping often in large areas with minimum spectral differences among geological units. The typical carbonate spectral absorptions in 2200 nm and 2300 nm, are excluded from the wavelength range of AISA Eagle II. AISA Eagle II hyperspectral data are processed in flight lines of 1024 swath pixels in the visible to near-infrared wavelength range (400 to 970 nm). The flight has a spatial resolution of 1 m and records a total of 128 channels with a spectral resolution of 4,8 nm. The area of study is a carbonate rocky mountain densely vegetated, covered by variably dense trees and bushes. Masking vegetation cover and shade effects is prior to any geological analysis using hyperspectral image processing. Carbonate units occur in mountain slopes, with small areas of ridges of rock outcrops and wide fans of loose material. The background soil of different geological units differ spectrally only by overall reflectance. Instead, limestone rocky outcrops display spectral responses with smooth typical iron oxide absorptions that distinguish them apart from loose boulders of limestone. Trying to enhance spectral differences in the visible wavelength range among carbonate geological units, an atmospheric correction using field spectra from geologically selected targets in a limestone quarry was performed. This way, it was possible to map apart lithologically similar detrital units dominated by carbonate in a river plain. The limy river bottom displays spectra with a straight line in the visible wavelength range due to abundant organic matter and small grain size. The spectra of the upper terraces record spectral absorption features related to iron oxide contents similar to the rock outcrops in ridges of mountains. The use of field spectra from geologically selected targets improves the mapping capability of hyperspectral imagery in areas with geological units with a homogeneous spectral response.


hyperspectral; carbonate; geological mapping; atmospheric correction

Full Text:



ASD. 2006. FieldSpecR 3 User Manual, ASD Document 600540 Rev. F. Analytical Spectral Devices, Inc. Disponible en: [Último acceso: junio de 2018].

Buzzi, J. 2012. Imaging spectroscopy to evaluate the contamination from sulphide mine waste in the Iberian Pyrite Belt using hyperspectral sensors (Huelva, Spain), Tesis Doctoral Universidad de León, 212 p.

Buzzi, J., Riaza, A., García-Meléndez, Carrère, V., Bachmann, M. 2011. Aplicación de modelos Gaussianos modificados a datos hiperespectrales de una zona contaminada por drenaje ácido. Caso del río Odiel (Huelva, España). XIV Congreso de la Asociación Española de Teledetección, Mieres, 21- 23 Septiembre 2011, 285-288.

Clark, R.N., Swayze, G.E., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J. 2007. USGS Digital Spectral Library splib06a. Digital Data Series 231, USGS: Denver, Co, USA, 2007.

EXELIS, 2011. ENVI User’s Guide. Exelis Visual Information Solutions: Boulder, Co, USA.

Hunt, G.R., Salisbury, J.W. 1971a. Visible and Near-infrared Spectra of Minerals and Rocks: II. Carbonates. Modern Geology, 2, 23-30.

Hunt, G.R., Salisbury, J.W., Lenhof, J. 1971b. Visible and Near-infrared Spectra of Minerals and Rocks: III Oxides and Hydroxides. Modern Geology, 2, 191-205.

Hunt, G.R., Salisbury, J.W., 1976. Visible and Near-infrared Spectra of Minerals and Rocks: XI. Sedimentary Rocks. Modern Geology, 5, 211-217.

López-Mir, B., Antón Muñoz, J., García-Senz, J. 2016, 3D geometric reconstruction of Upper Cretaceous passive diapirs and salt withdrawal basins in the Cotiella Basin (southern Pyrinees), Journal of the Geological Society, 173, 616-627.

Martínez, L., Tardà, A., Palà, V., Arbiol, R. 2006. Atmospheric correction algorithm applied to CASI multi-height hyperspectral imagery. Proceedings Second International Symposium Recent Advances in Quantitative Remote Sensing, 25-29 Septiembre 2006.

Riaza, A. Buzzi, J., García-Meléndez, E., del Moral, B., Carrère, V., Richter, R. 2017. Monitoring salt crusts on an AMD contaminated coastal wetland using hyperspectral Hyperion data (Estuary of the River Odiel, SW Spain). International Journal of Remote Sensing, 38(12), 3735-3762.

Riaza, A., García-Meléndez, E., Carrère, V., Mueller, A. 2014. Cartografía de sales marinas y fluviales en estuarios receptores de aguas ácidas con imágenes hiperespectrales Hyperion (Marismas del río Odiel, Huelva). Revista de Teledetección, 41, 1-7.

Riaza, A., Buzzi, J., García-Meléndez, E., Carrère, V., Müller, A. 2011. Monitoring the extent of contamination from acid mine drainage in the Iberian Pyrite Belt (SW Spain) using hyperspectral imagery. Remote Sensing, 3, 2166-2186.

Riaza, A., Buzzi, J., García-Meléndez, E., Vázquez, I., Bellido, E., Carrère, V., Müller, A. 2012. Pyrite mine waste and water mapping using Hymap and Hyperion hyperspectral data. Environmental Earth Sciences, 66-7, 1957-1971.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953