Reflectances of SPOT multispectral images associated with the turbidity of the Upper Gulf of California

Authors

  • J.A. Aguilar-Maldonado Universidad Autónoma de Baja California
  • E. Santamaría-del-Ángel Universidad Autónoma de Baja California
  • M.T. Sebastiá-Frasquet Universitat Politècnica de València https://orcid.org/0000-0002-8042-5628

DOI:

https://doi.org/10.4995/raet.2017.7795

Keywords:

Upper Gulf of California, Colorado River Delta, Turbidity, Multispectral images, SPOT, MODIS, Secchi Disk

Abstract

The use of satellite images for the observation and measurement of marine turbidity has been developed mainly with ocean colour sensors, such as MODIS. These images have a maximum spatial resolution of 250 m in their visible and infrared bands. In this research, images of the SPOT sensors were chosen as an alternative to overcome this limited spatial resolution. The objective was to prove the suitability of SPOT to measure turbidity in areas with great spatial variability. As a first step, all the images were standardized and the SPOT wavelength that had the largest association in the Principal Component Analysis was chosen (PCA). The results show that the bands of a SPOT multispectral image are highly redundant. The wavelength of the 610-680 nm (S2610-680) obtained the best association in 89% of the 73 images analysed. The SPOT reflectance (Rrs) (S2610-680) was compared with MODIS 620-670 nm (M1620-670), which has already been tested in other research and has proved to be adequate for measuring turbidity. Both sensors performance was similar for low and moderate reflectance but for high reflectance, SPOT (S2610-680) had a better performance than MODIS (M1620-670). Additionally, the SPOT Rrs (S2610-680) was associated with standardized Secchi disk depth data, which were measured in situ, to check SPOT suitability. SPOT Rrs (S2610-680)images were classified into: 1) cold or warm season, 2) spring tide or neap tide and 3) water flux or reflux. These constructed scenarios allowed to see the result of the Standardized Space Anomalies, which showed the continuous presence of low and medium values in the most oceanic region of the Upper Gulf of California (UGC) and very high values in all the scenarios in the intertidal zone. This research has shown that SPOT Rrs (S2610-680) is useful for observing, differentiating and measuring turbidity patterns in areas with very high spatial variability.

Downloads

Download data is not yet available.

Author Biographies

J.A. Aguilar-Maldonado, Universidad Autónoma de Baja California

Facultad de Ciencias Marinas

E. Santamaría-del-Ángel, Universidad Autónoma de Baja California

Facultad de Ciencias Marinas

M.T. Sebastiá-Frasquet, Universitat Politècnica de València

Instituto de Investigación para la Gestión Integrada de Zonas Costeras

References

Abreu, L. W., Anderson, G.P. 1996. The MODTRAN 2/3 Report and LOWTRAN 7 Model. Technical report, Ontar Corp., North Andover, Mass.

Ackleson, S., Klemas, V., McKim, H., Merry, C. 1985. A comparison of SPOT simulator data with Landsat MSS imagery for delineating water masses in Delaware Bay, Broadkill River and adjacent wetlands. Photogramm. Eng. Remote Sensing., 51(8), 1123-1129.

Aguilar-Maldonado, J. A., Santamaría-del-Ángel, E., González-Silvera, A., Cervantes-Rosas, O., LópezAcuña, L., Gutiérrez-Magness, A., Sebastiá-Frasquet, M. T. 2017. Identification of phytoplankton blooms under the index of Inherent Optical Properties (IOP index). 2nd International Electronic Conference on Water Sciences (ECWS-2).

Álvarez-Borrego, S., Flores-Báez, B. P., Galindo-Bect, L. A. 1975. Hidrología del Alto Golfo de California, II. Condiciones durante invierno, primavera y verano. Ciencias Marinas, 2(1), 21-36. https://doi. org/10.7773/cm.v2i1.275

Alvarez, L. G., Jones, S. E. 2004. Short–term observations of suspended particulate matter in a macro–tidal, inverse estuary. The Upper Gulf of California. J. Coast. Res., 20(3), 645–654. https:// doi.org/10.2112/1551-5036(2004)20[645:SOOSPM ]2.0.CO;2

Anji-Reddy, M. 1993. Remote sensing for mapping of suspended sediments in Krishna Bay Estuary, Andhra Pradesh, India. Int. J. Remote Sens. 14(11), 2215- 2221. https://doi.org/10.1080/01431169308954030

Bastidas-Salamanca, M., González-Silvera, A., MillánNúñez, R., Santamaría-del-Ángel, E., Frouin, R. 2014. Bio-Optical Characteristics of the Northern Gulf of California during June 2008. Int. J. Oceanogr., 2014. https://doi.org/10.1155/2014/384618

Baeye, M., Quinn, R., Deleu, S., Fettweis, M. 2016. Detection of shipwrecks in ocean colour satellite imagery. J. Archaeol. Sci., 66, 1-6. https://doi. org/10.1016/j.jas.2015.11.006

Berk, A., Anderson, G., Acharya, P., Chetwynd, J., Bernstein, L., Shettle, E., Matthew, M., AdlerGolden, S. 1999. MODTRAN4 User’s Manual, Air Force Res. Lab., Hanscom AFB, Mass.

Cai, L., Tang, D., Li, X., Zheng, H., Shao, W. 2015. Remote sensing of spatial-temporal distribution of suspended sediment and analysis of related environmental factors in Hangzhou Bay, China. Remote Sens. Lett. 6(8), 597-603. https://doi.org/10. 1080/2150704X.2015.1062158

Carriquiry, J. D., Cupul, M. A. L, Castro C., P.G. 1992. Anomalía en el balance sedimentario del río Colorado? Geos, (Unión Geofísica Mexicana). Vol.12,15. Carriquiry, J., Sánchez, A. 1999. Sedimentation in the Colorado River delta and Upper Gulf of California after nearly a century of discharge loss. Mar Geol., 158(1-4), 125-145. https://doi.org/10.1016/S0025- 3227(98)00189-3

Carriquiry, J., Villaescusa, J., Camacho-Ibar, V., Walter Daessle, L., Castro-Castro, P. 2011. The effects of damming on the materials flux in the Colorado River delta. Environ. Earth Sci., 62, 1407-1418. https:// doi.org/10.1007/s12665-010-0626-z

Chen, Z., Hu, C., Muller-Karger, F. 2007. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250- m imagery. Remote Sens. Environ., 109, 207–220. https://doi.org/10.1016/j.rse.2006.12.019

Chust, G., Sagarminaga, Y., Borja, A., Valencia, V. 2006. Extracción de propiedades ópticas en aguas costeras del Golfo de Vizcaya mediante MODIS-250 m. Revista de Teledetección, 25 Número Especial, 124- 128.

CONANP. 2007. Programa de Conservación y Manejo Reserva de la Biosfera Alto Golfo de California y delta del Río Colorado. Comisión Nacional de Áreas Naturales Protegidas, Secretaria de Medio Ambiente y Recursos Naturales, México,

Cozzoli, F., Smolders, S., Eelkema, M., Ysebaert, T., Escaravage, V., Temmerman, S., Meire, P., Herman, P. M. J., Bouma, T. J. 2017. A modeling approach to assess coastal management effects on benthic habitat quality: A case study on coastal defense and navigability. Estuar. Coast. Shelf Sci., 184, 67-82. https://doi.org/10.1016/j.ecss.2016.10.043

Cupul, A. L. 1994. Flujos de sedimentos en suspensión y nutrientes en la cuenca estuarina del Rı́ o Colorado. M.Sc. Thesis. Facultad de Ciencias Marinas. Universidad Autónoma de Baja California. Ensenada, Baja California.

Dafforn, K. A. Glasby, T. M., Airoldi, L., Rivero, N., Mayer-Pinto, M. Johnston, E. L. 2015. Marine urbanization: an ecological framework for designing multifunctional artificial structures. Front. Ecol. Environ., 13(2), 82-90, https://doi. org/10.1890/140050

Dogiotti, A., Ruddick, K., Nechad, B., Lasta, C. 2011. Improving water reflectance retrieval from MODIS imagery in the highly turbid waters of La Plata river. Proceedings of VI International Conference. Current problems in optics of natural waters. St.Petersburg, Russia, September 6-9.

Doxaran, D., Froidefond, J., Lavender, S., Castaing, P. 2002. Spectral signature of highly turbid waters. Remote Sensing of Environment, 81(1), 149-161. https://doi.org/10.1016/S0034-4257(01)00341-8

Doxaran, D., Castaing, P., Lavender, S. 2006. Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data. Int. J. Remote Sens., 27(11), 2303-2321. https://doi. org/10.1080/01431160500396865

Doxoran, D., Lamquin, N., Park, Y., Mazeran, C., Ryu, J., Wang, M., Poteau, A. 2014. Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens Environ., 146, 36- 48. https://doi.org/10.1016/j.rse.2013.06.020

French, R. H., Cooper, J., Vigg, S. 1982. Secchi disc relationships. Water Res. Bull., 18, 121-123. https:// doi.org/10.1111/j.1752-1688.1982.tb04538.x

Froidefond, J., Castaing, P., Mirmand, M., Ruch, P. 1991. Analysis of the turbid plume of the Gironde (France) based on SPOT radiometric data. Remote Sens. Environ., 36(3), 149-163. https://doi. org/10.1016/0034-4257(91)90053-9

Forget, P., Ouillon, S., Lahet, F., Broche, P. 1999. Inversion of Reflectance Spectra of Nonchlorophyllous Turbid Coastal Waters. Remote Sens. Environ., 68(3), 264-272. https://doi. org/10.1016/S0034-4257(98)00117-5

Gernez, P., Lafon, V., Lerouxel, A., Curti, C., Lubac, B., Cerisier, S., Barillé, L. 2015. Toward Sentinel-2 High Resolution Remote Sensing of Suspended Particulate Matter in Very Turbid Waters: SPOT4 (Take5) Experiment in the Loire and Gironde Estuaries. Remote Sens., 7(8), 9507-9528. https:// doi.org/10.3390/rs70809507

Gibbs, M.T. 2013. Environmental perverse incentives in coastal monitoring. Marine Pollution Bulletin, 73, 7–10. https://doi.org/10.1016/j. marpolbul.2013.05.019

Gippel,C. 1995. Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrol. Process., 9(1), 83-97. https://doi. org/10.1002/hyp.3360090108

Gordon. H., McCluney, W.R. 1975. Estimation of the Depth of Sunlight Penetration in the Sea for Remote Sensing, Appl. Opt., 14, 413-416. https:// doi.org/10.1364/AO.14.000413

Hernández-Ayón, J.M., Chapa-Balcorta, C., DelgadilloHinojosa, F., Camacho-Ibar, V., Huerta-Díaz, M., Santamaría-del-Angel, E., Galindo-Bect, S., Segovia-Zavala, J. 2013. Dynamics of dissolved inorganic carbon in the Midriff Islands region of the Gulf of California: Influence of water masses. Cienc. Mar. 39(2), 183-201. https://doi.org/10.7773/ cm.v39i2.2243

Howard, R. G., McCluney, W. R. 1975. Estimation of the Depth of Sunlight Penetration in the Sea for Remote Sensing, Appl. Opt., 14(2), 413-416. https:// doi.org/10.1364/AO.14.000413

Griffin, M. K., Burke, H. H. K. 2003. Compensation of hyperspectral data for atmospheric effects. Linc Lab J., 14(1), 29-54.

Huot, Y., Antoine, D. 2016. Remote sensing reflectance anomalies in the ocean. Remote Sens. Environ., 184, 101–111. https://doi.org/10.1016/j.rse.2016.06.002

IOCCG 2000. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. Shubha Sathyendranath (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 3, IOCCG, Dartmouth, Canada.

Jalón-Rojas, I., Schmidt, S., Sottolichio, A., Bertier, C. 2016. Tracking the turbidity maximum zone in the Loire Estuary (France) based on a long-term, high-resolution and high-frequency monitoring network. Cont. Shelf. Res., 117, 1-11. https://doi. org/10.1016/j.csr.2016.01.017

Kaufmann, Y. J., Wald, A. E., Remer, L. A., Gao, B.- C.,. Li, R.-R, Flynn, L. 1997. The MODIS 2.1- μm Channel-Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol. IEEE Transactions on Geoscience and Remote Sensing. 35, 1286-1298. https://doi.org/10.1109/36.628795

Le Gall A, Janssen, M.A., Lorenz R.D., Paillou P., Wall, S.D., The Cassini Radar Team 2010. Radarbright channels on Titan. Icarus. 207(2), 948-958. https:// doi.org/10.1016/j.icarus.2009.12.027

Lee, Z. Shang, S., Qi, L., Yan, J., Lin, G. 2016. A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sens. Environ., 177: 101-106. https://doi.org/10.1016/j. rse.2016.02.033

Lira-Chávez, J. 2010. Tratamiento digital de imágenes multiespectrales. Segunda Edición. México. Instituto de Geofísica, Universidad Nacional Autónoma de México.

Matthew, M., Adler-Golden, S., Berk, A., Richtsmeier, S., Levine, R., Bernstein, L., Acharya, P., Anderson, G., Felde, G., Hoke, M., Ratkowski, A., Burke, H., Kaiser, R., Miller, D. 2000. Status of atmospheric correction using a MODTRAN4-based algorithm. Proc. SPIE 4049, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI. https://doi.org/10.1117/12.410341

Mercado-Santana, A., Santamaría-del-Ángel, E., González-Silvera, A., Sánchez-Velasco, L., GraciaEscobar, M., Millán-Núñez, R., Torres-Navarrete, C. 2017. Productivity in the Gulf of California large marine ecosystem. Environ. Dev., 22, 18-29, https:// doi.org/10.1016/j.envdev.2017.01.003

Miller, R., McKee, B. 2004. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens Environ., 93, 259–266. https://doi.org/10.1016/j.rse.2004.07.012

Millán-Nuñez, R., Santamaría-del-Ángel, E., CajalMedrano, R., Barocio-León, O. 1999. The Colorado River Delta: A high primary productivity ecosystem. Cienc Mar., 25(4), 509-524. https://doi.org/10.7773/ cm.v25i4.729

Mohod-Hasmadi, I., Norsaliza, U. 2010. Analysis of SPOT-5 Data for Mapping Turbidity Level of River Klang Peninsular Malaysia. Appl. Rem. Sens. J. 1(2),14-18.

Moore, G. F., Aiken, J., Lavender, S. J. 2010. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS. Int. J. Remote Sens., 20(9), 1713-1733. https://doi. org/10.1080/014311699212434

NIMA, Department of Defense World Geodetic System 1984. National Imagery and Mapping Agency Technical (NIMA) Report 8350.2, Third Edition, September 1, 2000.

Nechad, B., Ruddick, K., Park, Y. 2010. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens Environ., 114(4), 854-866. https://doi. org/10.1016/j.rse.2009.11.022

Pyzdek, T. 2003. The Six Sigma Handbook. Revised and Expanded A Complete Guide for Green Belts, Black Belts, and Managers at all Levels. The McGrawHIll Companies

Sánchez-Carnero, N., Ojeda-Zujar, J., Rodríguez-Pérez, D. Marquez-Perez, J. 2013. Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: the mouth of the Guadiana Estuary. Int. J. Remote Sens., 35(2), 493-514. https://doi.org/10.1080/01431161.2 013.871402

Santamaría-del-Angel, E., Alvarez-Borrego, S., MüllerKarger, F. 1994. Gulf of California biogeographic regions based on coastal zone color scanner imagery. J. Geophys. Res., 99(C4), 7411-7421. https://doi. org/10.1029/93JC02154

Santamaría-delÁngel, E., Millán-Núñez, R., De la Peña, G. 1996. Efecto de la turbidez en la productividad primaria en dos estaciones en el Área del Delta del Río Colorado. Cienc Mar., 22(4), 483-493.

Santamaría-del-Ángel E., Millán-Núñez, R., González-Silvera, A.M., Cajal-Medrano, R. 2011a. Comparison of in situ and Remotely-Sensed Chl-a Concentrations: A Statistical Examination of the Match-up Approach 241-257. Chapter 17 in Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management. Edited by: Jesus Morales, Venetia Stuart, Trevor Platt and Shubha Sathyendranath J. EU PRESPO and IOCCG.

Santamaría-del-Ángel E., González-Silvera, A., MillánNúñez, R., Callejas-Jiménez, M., Cajal-Medrano, R. 2011b. Determining Dynamic Biogeographic Regions using Remote Sensing Data 273-293. Chapter 19 in Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management. Edited by: Jesus Morales, Venetia Stuart, Trevor Platt and Shubha Sathyendranath J. EU PRESPO and IOCCG. Santamaría-del-Angel, E., Soto, I., Millán-Nuñez, R., González-Silvera, A., Wolny, J., CerdeiraEstrada, S., Cajal-Medrano, R., Muller-Karger, F., Cannizzaro, J., Padilla-Rosas, Y., MercadoSantana, A., Gracia-Escobar, M., Alvarez-Torres, P., Ruiz-de-la Torre, M. 2015. Experiences and Recommendations for Environmental Monitoring Programs. Chapter: 4, in Environmental Science, Engineering and Technology. Publisher: Nova Science Publishers, Editors: Maria-Teresa SebastiaFrasquet, pp.32

Santamaría-del-Ángel, E., Aguilar-Maldonado, J. A., Galindo-Bect, M.S., Sebastiá-Frasquet, M.T. 2017. Marine Spatial Planning: Protected Species and Social Conflict in the Upper Gulf of California. Chapter: 16, in Marine Spatial Planning: Methodologies, Environmental Issues and Current Trends Publisher: Nova Science Publishers. Editors: Dimitra Kitsiou and Michael Karydis, pp. 25

Shi, W., Wang, M. 2007. Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing. Remote Sens. Environ., 110(2), 149-161. https://doi.org/10.1016/j.rse.2007.02.013

Sibson, R. 1981. A Brief Description of Natural Neighbor Interpolation. Chapter 2 in Interpolating Multivariate Data, 21–36. New York: John Wiley & Sons.

Simon, A., Shanmugam, P. 2012. An Algorithm for Classification of Algal Blooms Using MODIS-Aqua Data in Oceanic Waters around India. Advance in Remote Sensing, 1, 35-51. https://doi.org/10.4236/ ars.2012.12004

Verduin, J. 1982. Components contributing to light extinction in natural waters: Method of isolation. Archiv. Hydrobiol., 93, 303-312

Wang, M., Shi, W. 2005. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast ofthe U.S.: Two case studies. Geophys. Res. Lett., 32(13). https://doi. org/10.1029/2005GL022917

Zamora, C., 1993. Comportamiento del seston en la desembocadura del Rio Colorado, Sonora–Baja California. Thesis, Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California.

Downloads

Published

2017-12-26

Issue

Section

Research articles