Potential areas for groundwater exploration in the Puyango Catamayo Hydrographic Demarcation, Ecuador, using a analytic hierarchy process based on GIS and remote sensing
DOI:
https://doi.org/10.4995/raet.2018.7592Keywords:
MCDA, AHP, GWPI, Puyango Catamayo, groundwaterAbstract
The objective of this study is to apply geographic information systems and remote sensing techniques to map potential areas for groundwater exploration in the Puyango Catamayo hydrographic demarcation, based on free input data. The research’s primary data are a digital elevation model, satellite images, regional geology and rainfall. From the methodological point of view, Multi-Criteria Decision Analysis is applied, using an Analytic Hierarchy Process, which takes as thematic layers the rock permeability, the rainfall, the drainage density, the terrain slope, and the normalized difference vegetation index. Thus, the Groundwater Potential Index is obtained, which is used to map potential areas for groundwater exploration. The resulting map is compared with the existing data of the water point inventory, generated by the Ecuador’s National Institute of Meteorology and Hydrology. Data validation by this method shows that 30% of the water points are located in areas not suitable for groundwater exploration, while 70% are in favorable areas.
Downloads
References
Agarwal, R., Garg, P. K. 2016. Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resources Management, 30(1), 243-260. https://doi.org/10.1007/s11269-015-1159-8
Ayazi, M. H., Pirasteh, S., Pili, A. K. A., Biswajeet, P., Nikouravan, B., Mansor, S. 2010. Disasters and risk reduction in groundwater: Zagros mountain southwest Iran using geoinformatics techniques. Disaster Advances, 3(1), 51-57.
Burbano O. N., Becerra P. S., Pasquel S. E. 2015. Introducción a la hidrogeología del Ecuador. Quito: Instituto Nacional de Meteorología e Hidrología del Ecuador.
Catanha, M., Sacasas-León, C., Pérez-Lazo, J. 2014. Criterios para localizar zonas acuíferas en Caimbambo, Angola. Ingeniería Hidráulica y ambiental, XXXV(3), 20-32.
Congedo, L., Munafò, M. 2014. Urban sprawl as a factor of vulnerability to climate change: Monitoring land cover change in Dar es Salaam. In S. Macchi & M. Tiepolo (Eds.), Climate Change Vulnerability in Southern African Cities: Building Knowledge for Adaptation (pp. 73- 88). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-00672-7_5
Crónica. Pozo de agua subterránea para Paletillas. Último acceso: 23 de marzo, 2017, de http://www. cronica.com.ec/informacion/ciudad/item/15652- pozo-de-agua-subterranea-para-paletillas
Chavez, P. S. 1996. Image-based atmospheric corrections - revisited and improved. Photogrammetric Engineering & Remote Sensing, 61, 1025-1035.
Deepika, B., Avinash, K., Jayappa, K. S. 2013. Integration of hydrological factors and demarcation of groundwater prospect zones: insights from remote sensing and GIS techniques. Environmental Earth Sciences, 70(3), 1319-1338. https://doi.org/10.1007/s12665-013-2218-1
Jha, M. K., Chowdary, V. M., Chowdhury, A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713-1728. https://doi.org/10.1007/s10040-010-0631-z
Khodaei, K., Nassery, H. R. 2013. Groundwater exploration using remote sensing and geographic information systems in a semi-arid area (Southwest of Urmieh, Northwest of Iran). Arabian Journal of Geosciences, 6(4), 1229-1240. https://doi.org/10.1007/s12517-011-0414-4
López, K. 1999. Utilización de imágenes de satélite en la prospección de aguas subterráneas. Tesis de Grado, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador.
Machiwal, D., Jha, M. K., Mal, B. C. 2011. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25(5), 1359-1386. https://doi.org/10.1007/s11269-010-9749-y
Madrucci, V., Taioli, F., De Araújo, C. C. 2008. Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. Journal of Hydrology, 357(3-4), 153-173. https://doi.org/10.1016/j.jhydrol.2008.03.026
Malczewski, J. 1999. GIS and multicriteria decision analysis. New York: Wiley.
Mendoza-Nolorbe, J. N., Rojas-Acuña, J. 2013. Clasificación de imágenes ETM+ y ASTER GDEM por el método árbol de decisiones para la detección de agua subterránea en Perú. Caso Estudio: Lambayeque. En: Anais XVI Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Foz do Iguaçu, Brazil, 13-18 Abril. pp 5689-5696.
Musa, K. A., Akhir, J. M., Abdullah, I.. Groundwater prediction potential zone in Langat basin using the integration of Remote Sensing and GIS. Último acceso: 23 de marzo, 2017, de https:// www.geospatialworld.net/article/groundwaterprediction-potential-zone-in-langat-basin-usingthe-integration-of-remote-sensing-and-gis/
Nampak, H., Pradhan, B., Manap, M. A. 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283- 300. https://doi.org/10.1016/j.jhydrol.2014.02.053
Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., Singh, V. S. 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467-475. https://doi.org/10.1007/s00254-007-0992-3
Pravalie, R., Sîrodoev, I., Peptenatu, D. 2014. Detecting climate change effects on forest ecosystems in Southwestern Romania using Landsat TM NDVI data. Journal of Geographical Sciences, 24(5), 815- 832. https://doi.org/10.1007/s11442-014-1122-2
Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., Zeinivand, H. 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059- 7071. https://doi.org/10.1007/s12517-014-1668-4
Razandi, Y., Pourghasemi, H. R., Neisani, N. S., Rahmati, O. 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867- 883. https://doi.org/10.1007/s12145-015-0220-8
Rumazo, N. Mapa de zonas de precipitación (isoyetas) del Ecuador Continental, escala 1:250000, Año 2002 [mapa]. Último acceso: 23 de marzo, 2017, de http://geoportal.agricultura.gob.ec/catalogo_datos/ visualizador.html
Saaty, TL. 1980. The analytic hierarchy process: planning, priority setting, resource allocation. New York: McGraw-Hill.
SENAGUA. 2010. Acuerdo ministerial 2010-66. Quito: Secretaría del Agua.
Sener, E., Davraz, A., Ozcelik, M. 2005. An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeology Journal, 13(5), 826-834. https://doi.org/10.1007/s10040-004-0378-5
Tapia, S., Oyarzún, R., Núñez, J., Oyarzún, J. 2015. Identificación de zonas potenciales de recarga de aguas subterráneas en el sector de la mina Brillador. En: XIV Congreso Geológico Chileno, La Serena, Chile, 4-8 Agosto. pp 622-625.
Teeuw, R. M. 1995. Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeology Journal, 3(3), 21-30. https://doi.org/10.1007/s100400050057
Yasir Haya, L. O. M., Fujii, M. 2017. Mapping the change of coral reefs using remote sensing and in situ measurements: a case study in Pangkajene and Kepulauan Regency, Spermonde Archipelago, Indonesia. Journal of Oceanography, 1-23. https://doi.org/10.1007/s10872-017-0422-4
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International