Estimation of structural attributes of walnut trees based on terrestrial laser scanning

J. Estornell, A. Velázquez-Martí, A. Fernández-Sarría, I. López-Cortés, J. Martí-Gavilá, D. Salazar

Abstract

Juglans regia L. (walnut) is a tree of significant economic importance, usually cultivated for its seed used in the food market, and for its wood used in the furniture industry. The aim of this work was to develop regression models to predict crown parameters for walnut trees using a terrestrial laser scanner. A set of 30 trees was selected and the total height, crown height and crown diameter were measured in the field. The trees were also measured by a laser scanner and algorithms were applied to compute the crown volume, crown diameter, total and crown height. Linear regression models were calculated to estimate walnut tree parameters from TLS data. Good results were obtained with values of R2 between 0.90 and 0.98. In addition, to analyze whether coarser point cloud densities might affect the results, the point clouds for all trees were subsampled using different point densities: points every 0.005 m, 0.01 m, 0.05 m, 0.1 m, 0.25 m, 0.5 m, 1 m, and 2 m. New regression models were calculated to estimate field parameters. For total height and crown volume good estimations were obtained from TLS parameters derived for all subsampled point cloud (0.005 m – 2 m).


Keywords

dendrometry; walnut tree; laser scanner; convex hull;precision agriculture

Full Text:

PDF

References

Belsley. D.A. 1991. Conditioning Diagnostics: Collinearity and Weak Data in Regression. John Wiley & Sons.

Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., Kaasalainen, M. 2015. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution Methods, 6(2), 198-208. https://doi. org/10.1111/2041-210x.12301

Chianucci, F., Puletti, N., Giacomello, E., Cutini, A., Corona, P. 2015. Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry & Urban Greening, 14(2), 377-382. https://doi.org/10.1016/j.ufug.2015.04.001

Corona, P., Agrimi, M., Baffetta, F., Barbati, A., Chiriacò, M.V., Fattorini, L., Pompei, E., Valentini, R., Mattioli, W. 2012. Extending large-scale forest inventories to assess urban forests. Environmental Monitoring and Assessment, 184, 1409-1422. https://doi.org/10.1007/s10661-011-2050-6

Estornell, J., Ruiz, L.A., Velázquez-Martí, B., López- Cortés I., Salazar, D., Fernández-Sarría, A. 2015. Estimation of pruning biomass of olive trees using airborne discrete-return LiDAR data. Biomass and Bioenergy 81, 315-321. https://doi.org/10.1016/j. biombioe.2015.07.015

Fernández-Sarría, A., Velázquez-Martí, B., Sajdak, M., Martínez, L., Estornell, J. 2013a. Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Computers and Electronics in Agriculture, 93, 90-97. https://doi.org/10.1016/j. compag.2013.01.012

Fernández-Sarría, A., Martínez, L., Velázquez-Martí, B., Sajdak, M., Estornell, J., Recio, J.A. 2013b. Different methodologies for calculating crown volume of Platanus hispanica trees by terrestrial laser scanner and comparison with classical dendrometric measurements. Computers and Electronics in Agriculture, 90, 176-185. https://doi. org/10.1016/j.compag.2012.09.017

Gil, E., Llorens, J., Llop, J., Fàbregas, X., Gallart, M. 2013. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Sensors, 13(1), 516- 534. https://doi.org/10.3390/s130100516

Greaves H.E., Vierling L.A., Eitel J.U.H., Boelman N.T., Magney T.S., Prager C.M., Griffin K. L. 2015. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sensing of Environment, 164, 26-35.

https:// doi.org/10.1016/j.rse.2015.02.023

Höfle, B. 2014. Radiometric Correction of Terrestrial LiDAR Point Cloud Data for Individual Maize Plant Detection. Geoscience and Remote Sensing Letters, IEEE, 11(1), 94-98. https://doi.org/10.1109/ LGRS.2013.2247022

Hosoi, F., Omasa, K. 2009. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable LiDAR imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 151-158. https://doi.org/10.1016/j. isprsjprs.2008.09.003

Keightley, K.E., Bawden, G.W. 2010. 3D volumetric modeling of grapevine biomass using Tripod LiDAR. Computers and Electronics in Agriculture, 74(2), 305- 312. https://doi.org/10.1016/j.compag.2010.09.005

Manes, F., Incerti, G., Salvatori, E., Vitale, M., Ricotta, C., Costanza, R. 2012. Urban ecosystem services: tree diversity and stability of tropospheric ozone removal. Ecological Applications, 22(1), 349-360. https://doi.org/10.1890/11-0561.1

MAAM. 2015. Encuesta sobre superficies y rendimientos cultivos (ASYRCE). Encuesta de marco de áreas de España. Ministerio de Agricultura, Alimentación y Medio Ambiente de España, 44 pp.

Miranda-Fuentes, A., Llorens, J., Gamarra-Diezma, J.L., Gil-Ribes, J.A., Gil, E. 2015. Towards an optimized method of olive tree crown volume measurement. Sensors, 15(2), 3671-3687. https://doi.org/10.3390/ s150203671

Moorthy, I., Miller, J.R., Jimenez Berni, J.A., Zarco- Tejada, P., Hu, B., Chen, J. 2011. Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology, 151(2), 204-214.

https:// doi.org/10.1016/j.agrformet.2010.10.005

Rosell, J.R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., Escolà, A., Camp, F., Solanelles, F., Gràcia, F., Gil, E., Val, L., Planas, S., Palacín, J. 2009a. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology, 149(9), 1505-1515. https://doi.org/10.1016/j.agrformet.2009.04.008

Rosell, J.R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., Masip, J., Camp, F., Gràcia, F., Solanelles, F., Pallejà, T., Val, L., Planas, S., Gil, E., Palacín, J. 2009b. A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering, 102(2), 128-134. https://doi.org/10.1016/j.biosystemseng.2008.10.009

Rosell, J. R., Sanz, R. 2012. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. https://doi.org/10.1016/j.compag.2011.09.007

Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Lenz- Wiedemann, V., Miao, Y., Bareth, G. 2014. Multitemporal crop surface models: accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. Journal of Applied Remote Sensing, 8(1), 83671. https://doi. org/10.1117/1.jrs.8.083671

Abstract Views

832
Metrics Loading ...

Metrics powered by PLOS ALM




This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet