Estimation of structural attributes of walnut trees based on terrestrial laser scanning
DOI:
https://doi.org/10.4995/raet.2017.7429Keywords:
dendrometry, walnut tree, laser scanner, convex hull, precision agricultureAbstract
Juglans regia L. (walnut) is a tree of significant economic importance, usually cultivated for its seed used in the food market, and for its wood used in the furniture industry. The aim of this work was to develop regression models to predict crown parameters for walnut trees using a terrestrial laser scanner. A set of 30 trees was selected and the total height, crown height and crown diameter were measured in the field. The trees were also measured by a laser scanner and algorithms were applied to compute the crown volume, crown diameter, total and crown height. Linear regression models were calculated to estimate walnut tree parameters from TLS data. Good results were obtained with values of R2 between 0.90 and 0.98. In addition, to analyze whether coarser point cloud densities might affect the results, the point clouds for all trees were subsampled using different point densities: points every 0.005 m, 0.01 m, 0.05 m, 0.1 m, 0.25 m, 0.5 m, 1 m, and 2 m. New regression models were calculated to estimate field parameters. For total height and crown volume good estimations were obtained from TLS parameters derived for all subsampled point cloud (0.005 m – 2 m).
Downloads
References
Belsley. D.A. 1991. Conditioning Diagnostics: Collinearity and Weak Data in Regression. John Wiley & Sons.
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., Kaasalainen, M. 2015. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution Methods, 6(2), 198-208. https://doi. org/10.1111/2041-210x.12301
Chianucci, F., Puletti, N., Giacomello, E., Cutini, A., Corona, P. 2015. Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry & Urban Greening, 14(2), 377-382. https://doi.org/10.1016/j.ufug.2015.04.001
Corona, P., Agrimi, M., Baffetta, F., Barbati, A., Chiriacò, M.V., Fattorini, L., Pompei, E., Valentini, R., Mattioli, W. 2012. Extending large-scale forest inventories to assess urban forests. Environmental Monitoring and Assessment, 184, 1409-1422. https://doi.org/10.1007/s10661-011-2050-6
Estornell, J., Ruiz, L.A., Velázquez-Martí, B., López- Cortés I., Salazar, D., Fernández-Sarría, A. 2015. Estimation of pruning biomass of olive trees using airborne discrete-return LiDAR data. Biomass and Bioenergy 81, 315-321. https://doi.org/10.1016/j. biombioe.2015.07.015
Fernández-Sarría, A., Velázquez-Martí, B., Sajdak, M., Martínez, L., Estornell, J. 2013a. Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Computers and Electronics in Agriculture, 93, 90-97. https://doi.org/10.1016/j. compag.2013.01.012
Fernández-Sarría, A., Martínez, L., Velázquez-Martí, B., Sajdak, M., Estornell, J., Recio, J.A. 2013b. Different methodologies for calculating crown volume of Platanus hispanica trees by terrestrial laser scanner and comparison with classical dendrometric measurements. Computers and Electronics in Agriculture, 90, 176-185. https://doi. org/10.1016/j.compag.2012.09.017
Gil, E., Llorens, J., Llop, J., Fàbregas, X., Gallart, M. 2013. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Sensors, 13(1), 516- 534. https://doi.org/10.3390/s130100516
Greaves H.E., Vierling L.A., Eitel J.U.H., Boelman N.T., Magney T.S., Prager C.M., Griffin K. L. 2015. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sensing of Environment, 164, 26-35.
https:// doi.org/10.1016/j.rse.2015.02.023
Höfle, B. 2014. Radiometric Correction of Terrestrial LiDAR Point Cloud Data for Individual Maize Plant Detection. Geoscience and Remote Sensing Letters, IEEE, 11(1), 94-98. https://doi.org/10.1109/ LGRS.2013.2247022
Hosoi, F., Omasa, K. 2009. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable LiDAR imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 151-158. https://doi.org/10.1016/j. isprsjprs.2008.09.003
Keightley, K.E., Bawden, G.W. 2010. 3D volumetric modeling of grapevine biomass using Tripod LiDAR. Computers and Electronics in Agriculture, 74(2), 305- 312. https://doi.org/10.1016/j.compag.2010.09.005
Manes, F., Incerti, G., Salvatori, E., Vitale, M., Ricotta, C., Costanza, R. 2012. Urban ecosystem services: tree diversity and stability of tropospheric ozone removal. Ecological Applications, 22(1), 349-360. https://doi.org/10.1890/11-0561.1
MAAM. 2015. Encuesta sobre superficies y rendimientos cultivos (ASYRCE). Encuesta de marco de áreas de España. Ministerio de Agricultura, Alimentación y Medio Ambiente de España, 44 pp.
Miranda-Fuentes, A., Llorens, J., Gamarra-Diezma, J.L., Gil-Ribes, J.A., Gil, E. 2015. Towards an optimized method of olive tree crown volume measurement. Sensors, 15(2), 3671-3687. https://doi.org/10.3390/ s150203671
Moorthy, I., Miller, J.R., Jimenez Berni, J.A., Zarco- Tejada, P., Hu, B., Chen, J. 2011. Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology, 151(2), 204-214.
https:// doi.org/10.1016/j.agrformet.2010.10.005
Rosell, J.R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., Escolà, A., Camp, F., Solanelles, F., Gràcia, F., Gil, E., Val, L., Planas, S., Palacín, J. 2009a. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology, 149(9), 1505-1515. https://doi.org/10.1016/j.agrformet.2009.04.008
Rosell, J.R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., Masip, J., Camp, F., Gràcia, F., Solanelles, F., Pallejà, T., Val, L., Planas, S., Gil, E., Palacín, J. 2009b. A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering, 102(2), 128-134. https://doi.org/10.1016/j.biosystemseng.2008.10.009
Rosell, J. R., Sanz, R. 2012. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. https://doi.org/10.1016/j.compag.2011.09.007
Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Lenz- Wiedemann, V., Miao, Y., Bareth, G. 2014. Multitemporal crop surface models: accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. Journal of Applied Remote Sensing, 8(1), 83671. https://doi. org/10.1117/1.jrs.8.083671
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International