Trend in vegetational cover affected by fire in the Torres del Paine National Park

C. Rivera, C. Mattar, C. Durán-Alarcón

Abstract

Torres del Paine National Park (PNTP) is characterized as a representative geographical area of the world’s ecosystems, containing high scenic beauty and wide variety of ecosystems. The aim of this work is to analyze the spatial and temporal trends of vegetation at PNTP using remote images from the Landsat platforms, the MOD13A3 product from the Moderate Resolution Imaging Spectroradiometer (MODIS), coverage maps surface Global Land cover Maps of ESA/CCI 2005 and 2010 and a land cover map of continental Chile of 2014. In addition, the products of Soil Moisture and Ocean Salinity (SMOS) and meteorological data from the Torres del Paine meteorological station were used to analyze the environmental conditions that presented the park while the fire occurred the years 2011-2012. To determine the magni­tude of the changes of vegetation affected by fire at PNTP a nonparametric trend analysis was use with the Normalized Difference Vegetation Index (NDVI) of MODIS from 2002 to 2016 and the Normalized Burn Ratio (NBR) for the fire occurred the year 2005 and the years 2011-2012. The results show that between both fires it is been affected more than 30.000 hectares of the national park, being the “Scrub” and “Forest” coverage the most affected due to the high level of severity and the low regeneration of the burn area (less than 56%). The soil moisture does not exceed 20% m3m-3 before the fire and the rainfall does not exceed 101 mm during the days of fire, which is related to an increase in the probability of propa­gation of the fire. In this work is possible to realize that remote sensing can be used in the fire management to regard the national parks with the objective of preserve and conserve the flora, fauna and scenic beauty of Chile.

 


Keywords

Torres del Paine National Park; NBR; NDVI; soil moisture; burned area

Full Text:

PDF

References

Chaparro, D., Vayreda, J., Martínez-Vilalta, J., Vall-llossera, M., Banqué, M., Camps, A. y Piles, M. 2014. SMOS and climate data applicability for analyzing forest decline and forest fires. Geoscience and Remote Sensing Symposium, 2014 IEEE International. https://doi.org/10.1109/ IGARSS.2014.6946613

Chaparro, D., Vall-llossera, M., Piles, M., Camps, A. y Rüdiger, C. 2015. Low soil moisture and high temperatures as indicators for forest fire occurrence and extent across The Iberian Peninsula. Geoscience and Remote Sensing Symposium, 2015 IEEE International. https://doi.org/10.1109/ IGARSS.2015.7326530

Chowdhury, E. y Hassan, Q. 2015. Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 224-236. https://doi.org/10.1016/j.isprsjprs.2014.03.011

Chuvieco, E. (Ed.). 2003. Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data, Series in Remote Sensing, vol. 4. Singapore: World Scientific Publishing. https://doi. org/10.1142/5364

Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martínez-Vega, J., De la Riva, J. y Pérez, F. 2004. Combining NDVI and Surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92(3), 322-331. https://doi.org/10.1016/j. rse.2004.01.019

Chuvieco, E., Giglio, L. y Justice, C. O. 2008. Global characterization of fire activity: Towards defining fire regimes from earth observation data. Global Change Biology, 14, 1488-1502. https://doi. org/10.1111/j.1365-2486.2008.01585.x

Chuvieco, E. 2009. Detección y análisis de incendios forestales desde satélites de teledetección. X Programa de Promoción de la Cultura Científica y Tecnológica. Revista Real Academia de Ciencias Exactas Físicas y Naturales, 103(1), 173-181.

Chuvieco, E, Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M.P., Vilar, L., Martínez, J., Martín, S., Ibarra, P., de la Riva, J., Baeza, J., Rodríguez, F., Molina, J., Herrera, M. y Zamora, R. 2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46-58. https://doi.org/10.1016/j.ecolmodel.2008.11.017

Claverie, M., Vermote, E., Franch, B. y Masek, J. 2015. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sensing of Enviroment, 169, 390-403. https://doi. org/10.1016/j.rse.2015.08.030

Cocke, A. E., Fulé, P. Z. y Crouse, J. E. 2005. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire. 14, 189-198. https://doi.org/10.1071/WF04010

CONAF (Corporación Nacional Forestal). 2007. Plan de manejo Parque Nacional Torres del Paine. Ministerio de Agricultura. 284p.

CONAF (Corporación Nacional Forestal), 2016a. Estadística Visitantes Unidad SNASPE para el año: 2016. Gerencia de Áreas Protegidas y Medio Ambiente Unidad de Planificación y Control de Gestión. 3 p.

CONAF (Corporación Nacional Forestal). 2016b. Senderismo. Último acceso 01 de marzo, 2017, de http://www.parquetorresdelpaine.cl/es/senderismo.

CONAF (Corporación Nacional Forestal). 2016c. Que hacer en el parque. Último acceso 01 de marzo, 2017, de http://www.parquetorresdelpaine.cl/es/que-hacer-en-el-parque.

CONAF (Corporación Nacional Forestal). 2016d. Caminata en hielo. Último acceso 01 de marzo, 2017, de http://www.parquetorresdelpaine.cl/es/ caminata-en-hielo.

Contreras, S. e Irrazabal, P. 2010. Disturbance habitats effects on mammal species in Torres del Paine National Park and Biosphere Reserve, Magallanes Region, Chile, Mab Young Scientists Awards. UNESCO. 2009. 51 pp.

CR2 (Center for climate and resilience research). 2016. Datos de precipitación. Último acceso 01 de marzo, 2017, de http://www.cr2.cl/recursos-y-publicaciones/bases-de-datos/datos-de-precipitacion/.

Csiszar, I., Denis, L., Giglio, L., Justice, C. O. y Hewson, J. 2005. Global fire activity from two years of MODIS data. International Journal of Wildland Fire, 14, 117-130. https://doi.org/10.1071/WF03078

Decreto N° 1050/1962. Amplia la extensión del Parque Nacional de Turismo “Lago Grey” y declara que en lo sucesivo se denominará Parque Nacional de Turismo “Torres del Paine”. Ministerio de Agricultura. Publicado el 18 de enero de 1962. 2 p.

Delgado, L., Sepúlveda, M. y Marín, V. 2013. Provision of ecosystem services by the Aysén watershed, Chilean Patagonia, to rural households. Ecosystem Services, 5, 102–109. https://doi.org/10.1016/j. ecoser.2013.04.008

Domínguez, E., Elvebakk, A., Marticorena, C. y Pauchard, A., 2006. Plantas introducidas en el Parque Nacional Torres del Paine, Chile. Gayana Botánica. 63(2), 131-141. https://doi.org/10.4067/ S0717-66432006000200001

Dwyer, E., Pereira, J. M. C., Grégorie, J.-M. y Dacamara, C. 2000. Characterization of the spatio-temporal patterns of global fire activity using satellite imagery for the period April 1992 to March 1993. Journal of Biogeography, 27, 57-69. https://doi.org/10.1046/ j.1365-2699.2000.00339.x

ESA. 2016. Climate change initiative Land cover newsletter. Land Cover CCI Newsletter, 8.

Escuin, S., Navarro, R. y Fernández, P. 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4): 1053–1073. https://doi. org/10.1080/01431160701281072

Gajardo, R. 1994. La vegetación natural de chile. Clasificación y distribución geográfica. Editorial Universitaria-CONAF.

Gilbert, R.O. 1987. Sen’s Nonparametric Estimator of Slope. Statistical Methods for Environmental Pollution Monitoring. John Wiley and Sons, 217– 219.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. y Ferreira, L. G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/ S0034-4257(02)00096-2

Kendall, M. G. 1975. Rank Correlation Methods. Charles Griffin: London.

Key, C. y Benson, N. 2006. Landscape assessment: Remote sensing of severity, the normalized burn ratio and ground measure of severity, the composite burn index. En: Lutes D.C., R.E. Keane, J.F. Caratti, C.H. Key, N.C. Benson, & LJ Gangi (eds) FIREMON: fire effects monitoring and inventory system. General Technical Report RMRS-GTR-164- CD: 1-51.

Korontzi, S., Mccarty, J., Loboda, T., Kumar, S. y Justice, C.O. 2006. Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochemical Cycles, 20(2), 1-11. https://doi. org/10.1029/2005GB002529

Kottek, M., Grieser, J., Beck, C., Rudolf, B. y Rubel, F. 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. https://doi.org/10.1127/0941- 2948/2006/0130

LPDAAC (Land Processes Distributed Active Archive Center). 2015. MODIS Products Table. USGS. Último acceso 01 de marzo, 2017, de https://lpdaac. usgs.gov/dataset_discovery/modis/modis_products_ table.

Mattar, C., Santamaría-Artigas, A. y Durán-Alarcón, C. 2012. Estimación del área quemada en el Parque Nacional Torres del Paine utilizando datos de teledetección. Revista de Teledetección, 38, 36-50. Último acceso: diciembre de 2017, de http://www. aet.org.es/revistas/revista38/Numero38_04.pdf

Navarro, R., Hayas A., García-Ferrer A., Hernández Clemente, R., Duhalde P. y González, L. 2008. Caracterización de la situación pos incendio en el área afectada por el incendio de 2005 en el Parque Nacional de Torres del Paine (Chile) a partir de imágenes multiespectrales. Revista Chilena de Historia Natural, 81, 95-110. https://doi. org/10.4067/S0716-078X2008000100008

Navarro R., Olave, F., Hayas, F. y Castillo, M. 2015. Metodología para la elaboración de un plan de restauración post-incendio en Chile: la experiencia del Parque Nacional de Torres del Paine. Anales Instituto Patagonia (Chile), 43(1), 53-73. https:// doi.org/10.4067/S0718-686X2015000100005

Piles, M., Corbella, I. y Kerr, Y. 2011. Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3156-3166. https://doi.org/10.1109/TGRS.2011.2120615

Pisano, E. 1974. Estudio ecológico de la Región Continental Sur del Área Andino-Patagónica. II. Contribución a la fito-geografía de la zona del Parque Nacional “Torres del Paine”. Anales Instituto Patagonia (Chile), 1-2.

Pringle, M. J., Schmidt, M. y Muir, J. S. 2009. Geostatistical interpolation of SLCOFF Landsat ETM+ images. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 654-664. https://doi. org/10.1016/j.isprsjprs.2009.06.001

Repetto, F. y Cabello, J. 2015. Potencial de restauración ecológica en zonas de uso público en el Parque Nacional Torres del Paine. Anales Instituto Patagonia (Chile), 43(1): 115-121. https://doi.org/10.4067/ S0718-686X2015000100009

Rouse, J.W., Haas, R.H, Schell, J.A. y Deering, D.W. 1974. Monitoring vegetation systems in the Great Plains with ERTS: Fraden S.C. Macanti E.P. & Becjer M.A. (eds.). Third ERT-1 Symposium, 10-14 dec. 1973. NASA SP-351. Washington D.C. NASA, pp. 309-317.

Ruescas, A., Sobrino, J. A., Julien, Y., Jiménez-Muñoz, J. C., Sòria, G., Hidalgo, V., Atitar, M., Franch, B., Cuenca, J. y Mattar, C. 2010. Mapping sub-pixel burnt percentage using AVHRR data: Application to the Alcalaten area in Spain. International Journal of Remote Sensing, 31(20), 5315-5330. https://doi. org/10.1080/01431160903369592

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379-1389. https://doi.or g/10.1080/01621459.1968.10480934

SIIT (Sistema Integral de Información Territorial). 2015. Clima y Vegetación Región de Magallanes. Biblioteca Nacional de Chile.

SMOS-BEC Team (SMOS-Barcelona Expert Center). 2014a. SMOS-BEC Ocean and Land Products Description. 22 p.

SMOS-BEC Team (SMOS-Barcelona Expert Center). 2014b. Fire risk maps. Último acceso 01 de marzo, 2017, de http://www.smos-bec.icm.csic.es/fire_risk_ maps.

Úbeda, X. y Sarricolea, P. 2016. Wildfires in Chile: A review. Global and Planetary Change, 146, 152-161. https://doi.org/10.1016/j.gloplacha.2016.10.004

UNESCO (Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura). 2015. Chile, Torres del Paine. Último acceso: 01 de marzo, 2017, de http://www.unesco.org/new/ fileadmin/MULTIMEDIA/HQ/SC/pdf/sc_mab_ TorresdelPaine_EN.pdf.

USGS (United Stated Geological Survey). 2015a. Landsat-Earth Observation satellites. Fact Sheet 2015–3081, November 2015. U.S. Department of the Interior. U.S. Geological Survey.

USGS (United Stated Geological Survey). 2015b. Product Guide Provisional Landsat 8 Surface Reflectance Product. 27p

Vidal, O. 2012. Incendio en Torres del Paine. Patagon Journal. Último acceso: 01 de marzo, 2017 en de http://www.patagonjournal.com/15/January/2015.

Vidal, O. J y Bauk, V., 2014. Plan AMA Torres del Paine de restauración ecológica en bosques incendiados de Torres del Paine. Punta Arenas, Chile: Dirección de Vialidad MOP.

Vidal, O. J., Aguayo, M., Niculcar, R., Bahamonde, N., Radic, S., San Martín, C., Kusch, A., Latorre, J. y Félez, J. 2015. Plantas invasoras en el Parque Nacional Torres del Paine (Magallanes, Chile): Estado del arte, distribución post-fuego e implicancias en restauración ecológica. Anales Instituto Patagonia (Chile), 43(1), 75-96. https:// doi.org/10.4067/S0718-686X2015000100006

Zhang, C., Li, W. y Travis, D. 2007. Gaps-fill of SLC-OFF Landsat ETM+ satellite image using a geostatistical approach. International Journal of Remote Sensing, 28(22), 5103-5122. https://doi. org/10.1080/01431160701250416

Zhao, Y., Feng, D., Yua, L., Wang, X., Chen, Y., Hernández, H.J., Galleguillos, M., Estades, C., Biging, G., Radke, J. y n Gong, P. 2016. Detailed dynamic land cover mapping of Chile: accuracy improvement by integrating multi-seasonal land cover data. Remote Sensing of Environment, 183, 170-185. https://doi.org/10.1016/j.rse.2016.05.016

Abstract Views

1500
Metrics Loading ...

Metrics powered by PLOS ALM




 

This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet