LAI, FAPAR and FCOVER ground-truth map creation from FASat-C satellite imagery and in-situ measurements in Chimbarongo, Chile, for satellite products validation


  • C. Latorre-Sánchez Earth Observation Laboratory (EOLAB)
  • F. Camacho Earth Observation Laboratory (EOLAB)
  • C. Mattar Universidad de Chile
  • A. Santamaría-Artigas Earth Observation Laboratory (EOLAB)
  • N. Leiva-Büchi Universidad de Chile
  • R. Lacaze HYGEOS, Observation de la Terre / Earth Observation Euratechnologies



FASat-C, biophysical parameters, field campaign, validation, Copernicus


In remote sensing, validation exercises are essential to ensure the quality of the products originated from satellite Earth observations. To assess the measurement uncertainty derived from satellite products, several ground field data from different ecosystems must be available for use. In the same order of importance, it is necessary to define data sampling and up-scaling methodologies to allow a suitable comparison between the ground data and the pixel size of the product. This paper shows the applied methodology used in the FP7 ImagineS project (Implementing Multi-scale Agricultural Indicators Exploiting Sentinels) to validate 10-days global LAI, FAPAR and vegetation cover products at 1km spatial resolution using in-situ data. These global products are derived from PROBA-V observations in the Copernicus Global Land Service. In particular, this case study shows the results of the field-campaign carried out in January of 2015 in the agricultural area of Chimbarongo, Chile. The methodology to scale the ground data and to create ground-based maps using FASat-C Chilean satellite imagery with a 5,8 m spatial resolution using multivariate least squares regression is shown. Finally, the same methodology was used with a 30 m spatial resolution Landsat-8 image to analyze the effect of the field-data input on the ground-truth maps used to validate the results. Our results show the reliability on the presented methodology and the consistency of the method with regard to the input data. Better results and lower RMSE errors were obtained using FASat-C data. The comparison with satellite products at 1 km shows a good agreement with Copernicus Global Land products derived from PROBA-V observations, and systematic negative bias for the MODIS products.


Download data is not yet available.

Author Biographies

C. Latorre-Sánchez, Earth Observation Laboratory (EOLAB)

Remote Sensing Engineering, Data Scientist

F. Camacho, Earth Observation Laboratory (EOLAB)

EOLAB (Earth Observation LABoratory). Parc Cientific Universitat de València

C. Mattar, Universidad de Chile

Laboratorio para el Análisis de la Biosfera (LAB)

A. Santamaría-Artigas, Earth Observation Laboratory (EOLAB)

EOLAB (Earth Observation LABoratory). Parc Cientific Universitat de València


Barber, C.B., Dobkin, C.P, Huhdanpaa, H.T. 1986. The quickhull Algorithm for Convex Hulls, ACM Transactions on Mathematical software, 22(4):469- 483.

Camacho, F., Sánchez, J., Sánchez-Azofeifa, A., Calvo- Rodríguez, S. 2016. Quality Assessment Report. PROBA-V GEOV1: LAI, FAPAR, FCover, Issue I3.10. GIOGL1_QA_GEOV1-PROBAV report, 122. Disponible en [Último acceso: diciembre de 2016].

Camacho, F., Baret, F., Lacaze, R. 2015. Guidelines for field campaigns, Issue I1.10. Disponible en http:// [Último acceso: diciembre de 2016].

Camacho, F., Latorre, C., Lacaze, R., Baret, F., De la Cruz, F., Demarez, V., Di Bella, C., Fang, H., García-Haro, J., Gonzalez, M. P., Kussul, N., López- Baeza, E., Mattar, C., Nestola, E., Pattey, E., Piccard, I., Rudiger, C., Savin, I., Sanchez-Azofeifa, A., Boschetti, M., Bossio, D., Weiss, M., Castrignano, A., Zribi, M. 2014. A Network of Sites for Ground Biophysical Measurements in support of Copernicus Global Land Product Validation. Proceedings of the IV RAQRS conference, Torrent, 22-26 September 2014. ISBN: 978-84-370-9808-1

Camacho, F., Cemicharo, J., Lacaze, R., Baret, F., Weiss, M. 2013. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sensing of Environment, 137, 310- 329.

Cawley, G.C., Talbot, N.L.C. 2003. Efficient leave-one-out cross validation of kernel fisher discriminant classifiers. Pattern Recognition, 36(11), 2585-2592.

Cernicharo, J., Camacho, F., Martínez, B., López- Baeza, E. 2010. Estimación del contenido de agua de la vegetación en la zona V.A.S. de validación de SMOS mediante la extensión espacial de medidas de campo con imágenes CHRIS y MODIS. Revista de teledetección, 33, 64-79. Disponible en http://www. [Último acceso: diciembre de 2016].

Chander, G., Hewinson, T., Fox, N., Wu, X., Xiong, X., Blackwell, W. 2013. Overview of Intercalibration of Satellite Instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1056-1080.

CIREN 2002. Estudio Agrológico IX Región. Descripciones de suelos: Materiales y símbolos. N°122, 360 pp.

Fernandes, R., Plummer, S., Nightingale, J., Baret, F., Camacho, F., Fang, H., Garrigues, S., Gobron, N., Lang, M., Lacaze, R., LeBlanc, S., Meroni, M., Martinez, B., Nilson, T., Pinty, B., Pisek, J., Sonnentag, O., Verger, A., Welles, J., Weiss, M., Widlowski, J.L. 2014. Global Leaf Area Index Product Validation Good Practices Version 2.0. in G. Schaepman-Strub, M. Roman, & J. Nickeson (Eds.). Best Practice for Satellite-Derived Land Product Validation (p.76): Land Product Validation Subgroup. lpv/lai.002

Garcia-Haro, F.J, Sommer, S., Kemper, T. 2005. A new tool for variable multiple endmember spectral mixture analysis (VMESMA). International Journal of Remote Sensing, 26(10), 2135-2162. https://doi.or g/10.1080/01431160512331337817

Garrigues, S., Lacaze, R., Baret, F., Morisette, J. T., Weiss, M., Nickeson, J. E., et al., 2008a. Validation and Intercomparison of Global Leaf Area Index Products Derived From Remote Sensing Data. Journal of Geophysical Research, 113,G02028,

GCOS-154, 2011. Systematic Observation Requirements for Satellite-based Products for Climate Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC - 2011 Update, WMO, Geneva, Switzerland

Ifarraguerri, A., Chang, C.I. 1999. Multispectral and hyperspectral image analysis with convex cones. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 756-770. https://doi. org/10.1109/36.752192






Practical cases