Evolution of spectral behavior and chemical composition in the tree canopy of a dehesa ecosystem


  • R. González-Cascón Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
  • J. Pacheco-Labrador Consejo Superior de Investigaciones Científicas (CSIC)
  • M.P. Martín Consejo Superior de Investigaciones Científicas (CSIC)




Field spectroscopy, intact leaf reflectance, foliar nutrients, chlorophyll, SLM, LWC, Quercus ilex


In the context of the BIOSPEC and FLUXPEC projects (http://www.lineas.cchs.csic.es/fluxpec/), spectral and biophysical variables measurements at leaf level have been conducted in the tree canopy of a holm oak dehesa (Quercus ilex) ecosystem during four vegetative periods. Measurements of bi-conical reflectance factor of intact leaf (ASD Fieldspec 3® spectroradiometer), specific leaf mass (SLM), leaf water content (LWC), nutrient (N, P, K, Ca, Mg, Mn, Fe, and Zn) and chlorophyll concentration were performed. The spectral measurements have been related with the biophysical variables by stepwise and partial least squares regression analyses. These analyses allowed to identify the spectral bands and regions that best explain the evolution of the biophysical variables and to estimate the nutrient contents during the leaf maturation process. Statistically significant estimates of the majority of the variables studied were obtained. Wavelengths that had the highest contributions explaining the chemical composition of the forest canopy were located in spectral regions of the red edge, the green visible region, and the shortwave infrared.


Download data is not yet available.

Author Biographies

R. González-Cascón, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)

Departamento de Medio Ambiente

J. Pacheco-Labrador, Consejo Superior de Investigaciones Científicas (CSIC)

Laboratorio de Espectro-radiometría y Teledetección Ambiental

Instituto de Economía, Geografía y Demografía

Centro de Ciencias Humanas y Sociales


M.P. Martín, Consejo Superior de Investigaciones Científicas (CSIC)

Laboratorio de Espectro-radiometría y Teledetección Ambiental

Instituto de Economía, Geografía y Demografía

Centro de Ciencias Humanas y Sociales



Asner, G.P., Martin, R.E., Ford, A.J., Metcalfe, D.J., Liddell, M.J. 2009. Leaf chemical and spectral diversity in Australian tropical forests. Ecological Applications, 19(1), 236-253. http://dx.doi. org/10.1890/08-0023.1

Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C., Carranza, L., Martinez, P., Houcheime, M., Sinca, F., Weiss, P. 2011. Spectroscopy of canopy chemicals in humid tropical forests. Remote Sensing of Environment, 115(12), 3587-3598. http:// dx.doi.org/10.1016/j.rse.2011.08.020

Buschmann, C., Lenk, S., Lichtenthaler, H.K., 2012. Reflectance spectra and images of green leaves with different tissue structure and chlorophyll content. Israel Journal of Plant Sciences, 60(1-2), 49-64. http://dx.doi.org/10.1560/IJPS.60.1-2.49

Casals, P., Gimeno, C., Carrara, A., Lopez-Sangil, L., Sanz, M.J. 2009. Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa. Soil Biology & Biochemistry, 41(9), 1915-1922. http:// dx.doi.org/10.1016/j.soilbio.2009.06.015

Castro-Diez, P., Villar-Salvador, P., Perez-Rontome, C., Maestro-Martinez, M., Montserrat-Marti, G., 1997. Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees-Structure and Function, 11(3), 127-134. http://dx.doi.org/10.1007/ PL00009662

Gratani, L., Bonito, A. 2009. Leaf traits variation during leaf expansion in Quercus ilex L. Photosynthetica, 47(3), 323-330. http://dx.doi.org/10.1007/s11099- 009-0052-1

Hawkesford, H.W., Kichey T., Lambers H., Schjoerring J., Skrumsager Møller I., White P. 2012. Functions of Macronutrients 135-189. In Marschner’s Mineral Nutrition of Higher Plants (Third Edition). London: Elsevier. http://dx.doi.org/10.1016/B978-0-12- 384905-2.00006-6

Mac Arthur, A., MacLellan, C.J., Malthus, T. 2012. The Fields of View and Directional Response Functions of Two Field Spectroradiometers. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3892-3907. http://dx.doi.org/10.1109/ TGRS.2012.2185055

Mutanga, O., Skidmore, A.K. 2007. Red edge shift and biochemical content in grass canopies. Isprs Journal of Photogrammetry and Remote Sensing, 62(1): 34- 42. http://dx.doi.org/10.1016/j.isprsjprs.2007.02.001

Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T. 1992. Geometrical Consideration and Nomenclature for Reflectance. In U.D.o.C. National Bureau of Standards. Washington, DC

Ollinger, S.V. 2011. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist, 189(2), 375-394. http://dx.doi. org/10.1111/j.1469-8137.2010.03536.x

Ourcival, J.M., Joffre, R., Rambal, S. 1999. Exploring the relationships between reflectance and anatomical and biochemical properties in Quercus ilex leaves. New Phytologist, 143(2), 351-364. http://dx.doi. org/10.1046/j.1469-8137.1999.00456.x

Pacheco-Labrador, J., González-Cascón, R., Martín, M.P., Riaño, D. 2014. Understanding the optical responses of leaf nitrogen in Mediterranean Holm oak (Quercus ilex) using field spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 26, 105-118. http://dx.doi. org/10.1016/j.jag.2013.05.013

Tamburini, E., Ferrari, G., Marchetti, M.G., Pedrini, P., Ferro, S. 2015. Development of FT-NIR Models for the Simultaneous Estimation of Chlorophyll and Nitrogen Content in Fresh Apple (Malus Domestica) Leaves. Sensors 15(2), 2662-2679. http://dx.doi. org/10.3390/s150202662

Richardson, A.D., Reeves, J.B. 2005. Quantitative reflectance spectroscopy as an alternative to traditional wet lab analysis of foliar chemistry: nearinfrared and mid-infrared calibrations compared. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere, 35, 1122- 1130. http://dx.doi.org/10.1139/x05-037

Serbin, S.P., Singh, A., McNeil, B.E., Kingdon, C.C., Townsend, P.A. 2014. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecological Applications, 24(7), 1651-1669. http:// dx.doi.org/10.1890/13-2110.1

Slaton, M. R., Hunt, E.R., Smith, W.K. 2001. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany, 88(2), 278-284. http://dx.doi.org/10.2307/2657019

Stein, B.R., Thomas, V.A., Lorentz, L.J., Strahm, B.D. 2014. Predicting macronutrient concentrations from loblolly pine leaf reflectance across local and regional scales. Giscience & Remote Sensing, 51(3), 269-287. http://dx.doi.org/10.1080/15481603.2014. 912875

Sullivan, F.B., Ollinger, S.V., Martin, M.E., Ducey, M.J., Lepine, L.C., Wicklein, H.F. 2013. Foliar nitrogen in relation to plant traits and reflectance properties of New Hampshire forests. Canadian Journal of Forest Research, 43(1), 18-27. http://dx.doi.org/10.1139/ cjfr-2012-0324

Wellburn, A.R. 1994. The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. http://dx.doi. org/10.1016/S0176-1617(11)81192-2





Research articles