Cityscape, poverty and crime: A quantitative assessment using VHR imagery

Jorge Eduardo Patiño Quinchía

Colombia

Universidad Politècnica de València, España y Universidad EAFIT, Colombia

|

Accepted: 2016-03-22

|

Published: 2016-06-27

DOI: https://doi.org/10.4995/raet.2016.4755
Funding Data

Downloads

Keywords:

VHR imagery, urban areas, Slum Index, crime

Supporting agencies:

Programa Enlaza Mundos - Alcaldía de Medellín (Colombia)

Universidad EAFIT

Universitat Politècnica de València

Abstract:

Reseña de tesis doctoral leída el 21 de diciembre de 2015 en el Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría de la Unviersitat Politècnica de València.

Este trabajo aporta una revisión de las aplicaciones de la teledetección satelital en la investigación de ciencia regional en entornos urbanos. Se aporta además evidencia empírica acerca de la utilidad de las imágenes satelitales para cuantificar el grado de pobreza a escala intra-urbana, con base en dos premisas: primero, que la apariencia física de un asentamiento urbano es un reflejo de la sociedad que lo habita; y segundo, que la población de áreas urbanas con condiciones físicas de vivienda parecidas tiene características sociales y demográficas similares. Se evalúa el potencial de los descriptores del tejido urbano extraídos de la imagen para explicar una medida de pobreza conocida como el índice Slum. Encontramos que esas variables explican hasta un 59% de la variabilidad en el índice Slum.

También se analiza la relación entre el trazado urbano y crimen. Con base en la premisa de que la apariencia de un asentamiento es un reflejo de la sociedad, nos preguntamos si el diseño del barrio tiene un impacto cuantificable cuando se observa desde el espacio usando descriptores del tejido urbano obtenidos de imágenes de muy alta resolución. El porcentaje de superficies impermeables diferentes a los techos de arcilla, la fracción de techos de arcilla sobre las superficies impermeables, dos variables de estructura relacionadas con la homogeneidad del trazado urbano y la variable de textura uniformidad resultaron estadísticamente significativas.

Show more Show less

References:

Anselin, L., Cohen, J., Cook, D., Gorr, W., Tita, G. 2000. Spatial analyses of crime. Criminal Justice, 4, 213-262.

Barros, M. 2008. Slums detection through lacunaritybased texture analysis of remote sensing images. Expert group meeting on slum mapping. ITC, The Netherlands. Enschede: ITC, UN-HABITAT, CIESIN.

Browning, C. R., Byron, R. A., Calder, C. A., Krivo, L. J., Kwan, M.-P., Lee, J.-Y., Peterson, R. D. 2010. Commercial density, residential concentration, and crime: Land use patterns and violence in neighborhood context. Journal of Research in Crime and Delinquency, 47(3), 329-357. http://dx.doi. org/10.1177/0022427810365906

Cozens, P. M. 2008. New Urbanism, crime and the suburbs: A review of the evidence. Urban Policy and Research, 26(4), 429-444. http://dx.doi. org/10.1080/08111140802084759

Cullen, F. T., Agnew, R. 2011. The Chicago School: The city, social disorganization, and crime. En F. T. Cullen & R. Agnew (Eds.), Criminological theory: past to present. Essential readings (4th ed., pp. 89- 117). New York, Oxford: Oxford University Press.

Doll, C. N. H. 2008. CIESIN thematic guide to nighttime light remote sensing and its applications. Center for International Earth Science Information Network (CIESIN). Palisades, NY: Center for International Earth Science Information Network (CIESIN), Columbia University

Donovan, G. H., Prestemon, J. P., 2012. The effect of trees on crime in Portland, Oregon. Environment and Behavior, 44(1), 3-30. http://dx.doi. org/10.1177/0013916510383238

Doxani, G., Karantzalos, K., Strati, M. T. 2012. Monitoring urban changes based on scalespace filtering and object-oriented classification. International Journal of Applied Earth Observation and Geoinformation, 15, 38-48. http://dx.doi. org/10.1016/j.jag.2011.07.002

Duque, J. C., Patino, J. E., Ruiz, L. A., Pardo-Pascual, J. E. 2013a. Quantifying slumness with remote sensing data. CIEF working paper, EAFIT University, No. 13-23.

Duque, J. C., Patino, J. E., Ruiz, L. A., Pardo-Pascual, J. E. 2015. Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landscape and Urban Planning, 135, 11-21. http://dx.doi.org/10.1016/j. landurbplan.2014.11.009

Duque, J. C., Royuela, V., Noreña, M. 2013b. A stepwise procedure to determine a suitable scale for the spatial delineation of urban slums. En E. Fernandez & F. Rubiera Morollón (Eds.), Defining the spatial scale in modern regional analysis. Advances in Spatial Science (pp. 237-254). Berlin Heidelberg: SpringerVerlag.

Ebert, A., Kerle, N., Stein, A. 2009. Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data. Natural Hazards, 48(2), 275- 294. http://dx.doi.org/10.1007/s11069-008-9264-0

Forster, B. 1983. Some urban measurements from Landsat data. Photogrammetric Engineering and Remote Sensing, 49(12), 1693-1707.

Green, N. E. 1956. Scale analysis of urban structures: A study of Birmingham, Alabama. American Sociological Review, 21(1), 8-13. http://dx.doi. org/10.2307/2089333

Green, N. E. 1957. Aerial photographic interpretation and the social structure of the city. Photogrammetric Engineering, 23, 89-99.

Hofmann, P., Strobl, J., Blaschke, T., Kux, H. J. H. 2008. Detecting informal settlements from QuickBird data in Rio de Janeiro using an object-based approach. En T. Blaschke, S. Lang, & G. J. Hay (Eds.), Object-based image analysis - Spatial concepts for knowledge-driven remote sensing applications. (pp. 531-553). New York: Springer. http://dx.doi. org/10.1007/978-3-540-77058-9_29

Isard, W. 1975. An introduction to regional science. Englewood Cliffs, N.J.: Prentice Hall.

Isserman, A. M. 2004. Intellectual leaders of regional science: A half-century citation study. Papers in Regional Science, 83(1), 91-126. http://dx.doi. org/10.1007/s10110-003-0178-7

Jain, S. 2008. Remote sensing application for property tax evaluation. International Journal of Applied Earth Observation and Geoinformation, 10(1), 109- 121. http://dx.doi.org/10.1016/j.jag.2007.10.008

Jenerette, G. D., Harlan, S. L., Brazel, A., Jones, N., Larsen, L., Stefanov, W. L. 2007. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecology, 22(3), 353-365. http://dx.doi.org/10.1007/s10980-006- 9032-z

Jensen, J. R., Cowen, D. C. 1999. Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric Engineering and Remote Sensing, 65(5), 611-622.

Jensen, R., Gatrell, J., Boulton, J., Harper, B. 2004. Using remote sensing and geographic information systems to study urban quality of life and urban forest amenities. Ecology and Society, 9(5), 5-15.

Kohli, D., Sliuzas, R., Kerle, N., Stein, A. 2012. An ontology of slums for image-based classification. Computers, Environment and Urban Systems, 36(2), 154-163. http://dx.doi.org/10.1016/j. compenvurbsys.2011.11.001

Kuo, F. E., Sullivan, W. C. 2001. Environment and crime in the inner city. Does vegetation reduce crime? Environment and Behavior, 33(3), 343-367. http://dx.doi.org/10.1177/00139160121973025

Li, G., Weng, Q. 2007. Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. International Journal of Remote Sensing, 28(2), 249-267. http://dx.doi. org/10.1080/01431160600735624

Liu, X., Clarke, K. C., Herold, M. 2006. Population density and image texture: A comparison study. Photogrammetric Engineering and Remote Sensing, 72(2), 187-196. http://dx.doi.org/10.14358/ PERS.72.2.187

Lo, C. P. 1997. Application of LandSat TM data for quality of life assessment in an urban environment. Computers, Environment and Urban Systems, 21(3-4), 259-276. http://dx.doi.org/10.1016/S0198- 9715(97)01002-8

Mennis, J. 2006. Socioeconomic-vegetation relationships in urban, residential land: the case of Denver, Colorado. Photogrammetric Engineering and Remote Sensing, 72(8), 911-921. http://dx.doi. org/10.14358/PERS.72.8.911

Patino, J. E., Duque, J. C. 2013. A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 37, 1-17. http://dx.doi.org/10.1016/j. compenvurbsys.2012.06.003

Patino, J. E., Duque, J. C., Pardo-Pascual, J. E., Ruiz, L. A. 2014. Using remote sensing to assess the relationship between crime and the urban layout. Applied Geography, 55, 48-60. http://dx.doi. org/10.1016/j.apgeog.2014.08.016

Pozzi, F., Small, C. 2005. Analysis of urban land cover and population density in the United States. Photogrammetric Engineering and Remote Sensing, 71(6), 719-726. http://dx.doi.org/10.14358/ PERS.71.6.719

Rashed, T., Weeks, J., Couclelis, H., Herold, M. 2007. An integrative GIS and remote sensing model for place-based urban vulnerability analysis. En V. Mesev (Ed.), Integration of GIS and remote sensing (pp. 199–233). John Wiley & Sons, Ltd.

Rashed, T., Weeks, J. R., Stow, D., Fugate, D. 2005. Measuring temporal compositions of urban morphology through spectral mixture analysis: toward a soft approach to change analysis in crowded cities. International Journal of Remote Sensing, 26(4), 699-718. http://dx.doi.org/10.1080/ 01431160512331316874

Rindfuss, R. R., Stern, P. C. 1998. Linking remote sensing and social science: The need and the challenges. En D. Liverman, E. F. Moran, R. R. Rindfuss, P. C. Stern (Eds.), People and pixels: Linking remote sensing and social science (pp. 1–27). Washington, D.C.: National Academy Press.

Ruiz, L. A., Recio, J. A., Fernández-Sarría, A., Hermosilla, T. 2011. A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture, 76(2), 284-296. http://dx.doi.org/10.1016/j. compag.2011.02.007

Shaw, C. R., McKay, H. D. 1942. Juvenile Delinquency and Urban Areas. Chicago: University of Chicago Press.

Sliuzas, R., Kuffer, M., Masser, I. 2010. The spatial and temporal nature of urban objects. En T. Rashed, C. Jürgens (Eds.), Remote sensing of urban and suburban areas (pp. 67-84). Dordrecht: Springer Netherlands. http://dx.doi.org/10.1007/978-1-4020- 4385-7_5

Taubenböck, H., Post, J., Roth, A., Zosseder, K., Strunz, G., Dech, S. 2008. A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Natural Hazards and Earth System Science, 8(3), 409-420. http://dx.doi.org/10.5194/ nhess-8-409-2008

Taubenböck, H., Wurm, M., Setiadi, N., Gebert, N., Roth, A., Strunz, G., Birkmann, J., Dech, S. 2009. Integrating remote sensing and social science - The correlation of urban morphology with socioeconomic parameters. IEEE 2009 Urban Remote Sensing Joint Event. London.

Weeks, J. R., Hill, A. G., Stow, D., Getis, A., Fugate, D. 2007. Can we spot a neighborhood from the air? Defining neighborhood structure in Accra, Ghana. GeoJournal, 69(1-2), 9–22. http://dx.doi. org/10.1007/s10708-007-9098-4

Weng, Q., Quattrochi, D. A., 2006. Urban remote sensing. Boca Raton: CRC Press - Taylor & Francis Group. http://dx.doi.org/10.1201/b15917

Wilson, J. Q., Kelling, G. L. 1982. Broken windows: The police and neighborhood safety. Atlantic Monthly, 249(3), 29-38.

Yu, D., Wu, C. 2006. Incorporating remote sensing information in modeling house values : A regression tree approach. Photogrammetric Engineering and Remote Sensing, 72(2), 129-138. http://dx.doi. org/10.14358/PERS.72.2.129

Show more Show less