A volumetric approach to spatial population disaggregation using a raster build-up layer, land use/land cover databases (SIOSE) and LIDAR remote sensing data


  • F.J. Goerlich Universitat de València




population grids, dasymetric mapping, spatial disaggregation, land use/land cover, SIOSE, LIDAR data


Availability of high resolution population distribution data, independent of the administrative units in which demographic statistics are collected, is a real necessity in many fields: risk evaluation due to earthquakes, flooding or fires, to name just a few, integration between socio-demographic and environmental or geographical information collected in different formats, policy design for the provision public services, such as health, education or public transport, or mobility studies in urban areas or metropolitan regions. Because of this, the literature has explored various methods of population downscaling, collected at communality or census tract level, into smaller areas; typically urban polygons from high resolution topographic maps or land use/land cover databases, or grid cells, allowing the elaboration of raster population layers. A common feature of all these methods is that they do not incorporate building height. In this way, downscaling methods don´t distinguish between the urban sprawl type of settlement, where most of the houses are detached or semi-detached, and compact cities with high buildings. This paper examines error reduction in downscaling census tract population into 1×1 km and 1 ha grids, when we add the third dimension, building height from LIDAR remote sensing data. Algorithms used are simple, and based on areal weighting with or without auxiliary land use/land cover information, since our focus is not in fine turning algorithms, but in measuring improvements due to the missing dimension: building height. Our results indicate that improvements are noticeable. They are comparable to the ones obtained when we move from binary dasymetric methods to more general models combining densities for different land use/land cover types. Hence, adding the third dimension to population downscaling algorithms seems worth pursuing.


Download data is not yet available.

Author Biography

F.J. Goerlich, Universitat de València

Departamento de Análisis Económico


Bhaduri, B., Bright, E., Coleman, P., Urban, M. L. 2007. LandScan USA: A high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal, 69(1-2), 103-117. http://dx.doi.org/10.1007/s10708-007- 9105-9

Balk, D., Yetman, G. 2004. The global distribution of population: Evaluating the gains in resolution refinement. Center for International Earth Science Information Network (CIESIN), Columbia University. New York, USA. Accesible en: http:// sedac.ciesin.columbia.edu/downloads/docs/ gpw-v3/gpw3_documentation_final.pdf (Acceso: junio/2016).

Batista e Silva, F. 2015. The ENACT project: towards spatiotemporal activity and population mapping in Europe. En: European Forum for Geography and Statistics. Vienna: 10-12 noviembre. Accesible en: http://cpanel53.proisp.no/~efgsiowd/ wp-content/uploads/conferences/efgs/2015/ Conference_EFGS2015_1110_7_7_ENACT-FilipeBatistaPresentation.pptx (Acceso: junio/2016).

Batista e Silva, F., Gallego, J., Lavalle, C. 2013a. A high-resolution population grid map for Europe. Journal of Maps, 9(1), 16-28. http://dx.doi.org/10.1 080/17445647.2013.764830

Batista e Silva, F., Lavalle, C., Koomen, E. 2013b. A procedure to obtain a refined European land use/cover map. Journal of Land Use Science, 8(3), 255-283. http://dx.doi.org/10.1080/174742 3X.2012.667450

Batista e Silva, F., Poelman, H., Martens, V., Lavalle, C. 2013c. Population Estimation for the Urban Atlas Polygons. Joint Research Centre. Technical Report 24437.

Dijkstra, L., Poelman, H. 2012. Cities in Europe. The new OECD-EC definition, Regional Focus, 1/2012, Bruselas, EC-DG REGIO.

Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., Worley, B. A. 2000. LandScan: A global population database for estimating population at risk. Photogrammetric Engineering and Remote Sensing, 66(7), 849-857.

Eicher, C., Brewer, C. 2001. Dasymetric mapping and areal interpolation: implementation and evaluation. Cartography and Geographic Information Science, 28(2), 125-138. http://dx.doi. org/10.1559/152304001782173727

ESRI. 2013. ArcGIS Desktop. Release Version 10.2.0. Redlands, CA: Environmental Systems Research Institute.

Ferri, S., Syrris, V., Florczyk, A., Scavazzon, M., Halkia, M., Pesaresi, M. 2014. A new map of the European settlements by automatic classification of 2.5m resolution SPOT data. In IEEE International Geoscience and Remote Sensing Symposium (pp. 1160-1163). IGARSS. http://dx.doi.org/10.1109/ IGARSS.2014.6946636

Fisher, P. F., Langford, M. 1995. Modelling the errors in areal interpolation between zonal systems by Monte Carlo simulation. Environment and Planning A, 27, 211-224. http://dx.doi.org/10.1068/a270211

Florczyk, A. J., Ferri, S., Syrris, V., Kemper, T., Halkia, M., Soille, P., Pesaresi, M. 2015. A New European Settlement Map From Optical Remotely Sensed Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 1978-1992. http://dx.doi.org/10.1109/JSTARS.2015.2485662

Freire, S., Halkia, M., Pesaresi, M., Ehrlich, D. 2015. Urban and Regional Built-up Analysis (URBA). Production of a population grid in Europe (1 km of resolution) JRC Technical Reports. Report EUR 27482. http://dx.doi.org/10.2788/954596

Gallego, F. J. 2010. A population density grid of the European Union. Population & Environment, 31(6), 460-473. http://dx.doi.org/10.1007/s11111-010- 0108-y

Gallego, F. J., Batista, F., Rocha, C., Mubareka, S. 2011. Disaggregating population density of the European Union with CORINE land cover. International Journal of Geographical Information Science, 25(12), 2051-2069. http://dx.doi.org/10.1080/1365 8816.2011.583653

Goerlich, F. J., Cantarino, I. 2012. A population density grid for Spain. International Journal of Geographical Information Science, 27(12), 2247- 2263. http://dx.doi.org/10.1080/13658816.2013.79 9283

Goerlich, F. J., Cantarino, I. 2016. Grid poblacional 2011 para España. Evaluación metodológica de diversas posibilidades de elaboración. Estudios Geográficos. Pendiente de publicación.

Halkia, M. 2014. GHSL application in Europe: Towards new population grids. En: European Forum for Geography and Statistics. Krakov: 22-24 octubre. https://geo.stat.gov.pl/documents/20182/25353/2_ EFSG2014+Halkiav.pdf/a4fb7e4c-9013-4d0f-8f44- 198ee77a56ec (Acceso: junio/2016).

Halkia, M., Freire, S. 2015. Towards a 100-m GHSLbased population grid in Europe. En: European Forum for Geography and Statistics. Vienna: 10- 12 noviembre. Accesible en: http://cpanel53.proisp. no/~efgsiowd/wp-content/uploads/conferences/ efgs/2015/Conference_EFGS2015_1110_7_6_EC_ JRCPresentation.pptx (Acceso: junio/2016).

Harvey, J. T. 2002. Population Estimation Models Based on Individual TM Pixels. Photogrammetric Engineering & Remote Sensing, 68(11), 1181-1192.

Hermosilla, T., Ruiz, L. A., Recio, J. A., Estornell, J. 2011. Evaluation of Automatic Building Detection Approaches Combining High Resolution Images and LiDAR Data. Remote Sensing, 3(6), 1188-1210. http://dx.doi.org/10.3390/rs3061188

Hermosilla, T., Ruiz, L. A., Gil-Yepes, J. L., Recio, J. A., Pardo, J. E. 2013. Multi-Level Object-Based Urban Mapping: From Remote Sensing and GIS Data. En GIS Ostrava - Geoinformatics for City Transformation. Ostrava: 21-23 enero. pp. 1-10.

INSPIRE. 2010. D2.8.I.2 INSPIRE specification on geographical grid systems - guidelines. Version 3.0.1. Brussels: INSPIRE Thematic Working Group Coordinate Reference Systems and Geographical Grid Systems (26 April 2010). Accesible enhttp:// inspire.jrc.ec.europa.eu/index.cfm/pageid/2. (Acceso: junio/2016).

Kaufholz, R. P. 2004. Building Densities. A Physical Volume Approach. MSc dissertation, MSc thesis Faculteit der Aarden levenswetenschappen Vrije Universiteit Amsterdam.

Kim, T., Lee, T.-Y., Kim, K.-O. 2006. Semiautomatic Building Line Extraction from Ikonos Images Through Monoscopic Line Analysis. Photogrammetric Engineering & Remote Sensing, 72(5), 541-549. http://dx.doi.org/10.14358/ PERS.72.5.541

Kose, M. 2015. Improving Population Estimation Models Using Remotely Sensed and Ordnance Survey Datasets. Doctoral dissertation, Department of Geography. University of Leicester.

Langford, M. 2006. Obtaining population estimates in non-census reporting zones: An evaluation of the 3-class dasymetric method. Computers, Environment and Urban Systems, 30(2), 161-180. http://dx.doi. org/10.1016/j.compenvurbsys.2004.07.001

Langford, M. 2007. Rapid facilitation of dasymetricbased population interpolation by means of raster pixel maps. Computers, Environment and Urban Systems, 31(1), 19-32. http://dx.doi.org/10.1016/j. compenvurbsys.2005.07.005

Langford, M., Unwin, D. J. 1994. Generating and mapping population density surfaces within a geographical information system. Cartographic Journal, 31(1), 21-26. http://dx.doi.org/10.1179/ caj.1994.31.1.21

Liu, X., Herold, M. 2006. Population Estimation and Interpolation Using Remote Sensing. En Q. Weng y D. A. Quattrochi (Eds.), Urban Remote Sensing, Taylor & Francis Group: pp. 269-290. http://dx.doi. org/10.1201/b15917-18

Lu, Z., Im, J., Quackenbush, L. 2011. A volumetric approach to population estimation using LIDAR remote sensing. Photogrammetric Engineering and Remote Sensing, 77(11), 1145-1156. http://dx.doi. org/10.14358/PERS.77.11.1145

Lu, Z., Im, J., Quackenbush, L., Halligan, K. 2010. Population estimation based on multi-sensor data fusion. International Journal of Remote Sensing, 31(21), 5587-5604. http://dx.doi.org/10.1080/0143 1161.2010.496801

Lwin, K. K., Murayama, Y. 2009. A GIS approach to estimation of building population for micro-spatial analysis. Transactions in GIS, 13(4), 401-414. http:// dx.doi.org/10.1111/j.1467-9671.2009.01171.x

Lwin, K. K., Murayama, Y. 2011. Estimation of Building Population from LIDAR Derived Digital Volume Model. In Y. Murayama & R. B. Thapa (Eds.), Spatial Analysis and Modeling in Geographical Transformation Process: GIS-based Applications (First, pp. 87-98). New York, USA. http://dx.doi. org/10.1007/978-94-007-0671-2_6

Martin, D., Cockings, S., Smith A. 2015. Exploiting census workplace data to build a daytime grid map of England and Wales. En: European Forum for Geography and Statistics. Vienna: 10-12 noviembre. Accesible en: http://cpanel53.proisp. no/~efgsiowd/wp-content/uploads/conferences/ efgs/2015/Conference_EFGS2015_1110_7_4_ DaveJMartinPresentation.pptx (Acceso: junio/2016).

Martin, D., Tate, N. J., Langford, M. 2000. Refining population surface models: experiments with Northern Ireland census data. Transactions in GIS, 4(4), 343-360. http://dx.doi.org/10.1111/1467- 9671.00060

Mennis, J. 2003. Generating surface models of population using dasymetric mapping. Professional Geographer, 55(1), 31-42. http://onlinelibrary. wiley.com/doi/10.1111/0033-0124.10042/abstract (Acceso: junio/2016).

Mennis, J. 2009. Dasymetric mapping for estimating population in small areas. Geography Compass, 3(2), 727-745. http://dx.doi.org/10.1111/j.1749- 8198.2009.00220.x

Mennis, J., Hultgren, T. 2006. Intelligent Dasymetric Mapping and Its Application to Areal Interpolation. Cartography and Geographic Information Science, 33(3), 179-194. http://dx.doi. org/10.1559/152304006779077309

Qiu, F., Sridharan, H., Chun, Y. 2010. Spatial Autoregressive Model for Population Estimation at the Census Block Level Using LIDAR-derived Building Volume Information. Cartography and Geographic Information Science, 37(3), 239-257. http://dx.doi.org/10.1559/152304010792194949

Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., ... & Marin-Herrera, M. A., Ouzounis, G.K., Scavazzon, M., Soille, P., Syrris, V., Zanchetta, L. 2013. A Global Human Settlement Layer from optical HR/VHR RS data: Concept and first results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2102-2131. http://dx.doi.org/10.1109/ JSTARS.2013.2271445

Ramesh, S. 2009. High resolution satellite images and LiDAR data for small-area building extraction and population estimation. MSc dissertation, University of North Texas. Accesible en: http://digital.library. unt.edu/ark:/67531/metadc12188/m2/1/high_res_d/ thesis.pdf (Acceso: junio/2016).

Rottensteiner, F. 2003. Automatic Generation of HighQuality Building Models from LIDAR Data. IEEE Computer Graphics and Applications, 23(6), 42-50. http://dx.doi.org/10.1109/MCG.2003.1242381

Rottensteiner, F., Jansa, J. 2002. Automatic extraction of buildings from LIDAR data and aerial images. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(4), 569-574. Accesible en: http://testcis.cis. rit.edu/~cnspci/references/dip/urban_extraction/ rottensteiner2002.pdf (Acceso: junio/2016).

Santos Preciado J. M. 2015. La cartografía catastral y su utilización en la desagregación de la población. Aplicación al análisis de la distribución espacial de la población en el municipio de Leganés (Madrid). Estudios Geográficos, 76(278), 309-333. http:// dx.doi.org/10.3989/estgeogr.201511

SIOSE. 2011. Descripción del Modelo de Datos y Rótulo SIOSE2005. Versión 2.2. Sistema de Información de Ocupación del Suelo de España. Equipo Técnico Nacional SIOSE. Instituto Geográfico Nacional. Accesible en: http://www.siose.es/SIOSEthemetheme/documentos/pdf/ModeloDatos_Rotulo_ SIOSE_v2.1.pdf (Acceso: junio/2016).

Tobler, W. R. 1979. Smooth pycnophylactic interpolation for geographical regions. Journal of the American Statistical Association, 74(367), 519-530. http:// dx.doi.org/10.1080/01621459.1979.10481647

Tobler, W. R., Deichmann, U., Gottsegen, J., Maloy, K. 1997. World Population in a Grid of Spherical Quadrilaterals. International Journal of Population Geography, 3(3), 203-225. http://dx.doi.org/10.1002/ (SICI)1099-1220(199709)3:3%3C203::AIDIJPG68%3E3.0.CO;2-C

Wright, J. K. 1936. A method of mapping densities of population with Cape Cod as an example. The Geographical Review, 26, 103-110. http://dx.doi. org/10.2307/209467

Wu, C., Murray, A. T. 2005. A cokriging method for estimating population density in urban areas. Computers, Environment and Urban Systems, 29(5), 558-579. http://dx.doi.org/10.1016/j. compenvurbsys.2005.01.006

Wu, S., Qiu, X., Wang, L. 2005. Population Estimation Methods in GIS and Remote Sensing: A Review. GIScience Remote Sensing, 42(1), 80-96. http:// www.tandfonline.com/doi/abs/10.2747/1548- 1603.42.1.80 (Acceso: junio/2016).

Yu, B., Liu, H., Wu, J., Hu, Y., Zhang, L. 2010. Automated derivation of urban building density information using airborne LIDAR data and objectbased method. Landscape and Urban Planning, 98(3-4), 210-219. http://dx.doi.org/10.1016/j. landurbplan.2010.08.004

Yuan, Y., Smith, R. M., Limp, F. W. 1997. Remodeling Census Population with Spatial Information from Landsat TM Imagery. Computers, Environment and Urban Systems, 21(3-4), 245-258. http://dx.doi. org/10.1016/S0198-9715(97)01003-X





Practical cases