Determination of forest biomass using remote sensing techniques with radar images. Pilot study in area of the province of Huelva. REDIAM

E. Méndez, J.J. Vales, I. Pino, L. Granado, G. Montoya, R. Prieto Molina, I.R. Carpintero, F. Giménez de Azcárate, F. Cáceres, J.M. Moreira, D. de la Fuente, A. Sebastián, J. Suárez

Abstract

Biomass is a very important forest resource in Andalusia. “Forest Biomass in Andalusia” web tool, developed by the Andalusian Government, provides information about the location and biomass stock for the main pine forest species. It is important to mention that information needs to be regularly, quickly, effectively and inexpensively updated. These requirements could be covered with the help of Earth Observation technologies. In this project, radar images have been acquired from ALOS-PALSAR sensor from different years (2008 and 2010) over two pilot areas located in Huelva. The aim of the study has been to develop a methodology to estimate wood volumes based on the statistic correlation between radar signal and wood volume, variable extracted of forest management plans contemporary to images. As result, correlations of 0.8 and 0.7 have been obtained for pine and eucalyptus respectively. Forest biomass has been calculated using species-specific allometric equations. Three key sources of information have been used: a sample of plots distributed homogeneously, an accurate digital terrain model and a current forest map. Furthermore, the study of the variability of estimated volumes between these dates has been carried out. Methodologies obtained could be extrapolated to the whole region.


Keywords

remote sensing; radar; ALOS-PALSAR; backscattering; aboveground biomass.

Full Text:

PDF

References

ALOS Kyoto & Carbon Initiative Science Plan, 2008. Available at: http://www.eorc.jaxa.jp/ALOS/en/kyoto/kyoto_index.htm Last access: February 2016.

Attema, E.P.W., Ulaby, F.T. 1978. Vegetation model as a water cloud. Radio Science, 13(2), 357-364.

http://dx.doi.org/10.1029/RS013i002p00357

Askne, J., Dammert, P., Fransson, J., Israelsson, H., Ulander, L.M.H. 1995. Retrieval of forest parameters using intensity and repeat-pass interferometric SAR information. Retrieval of bio- and geophysical parameters from SAR data for land applications, Symposium held in Toulouse, France, 10-13, October 1995, (ACTES), pp. 119-129.

Cartus, O., Santoro, M., Kellndorfer, J. 2012. Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sensing of Environment, 124, 466-478. http://dx.doi.org/10.1016/j.rse.2012.05.029

Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía. 2014. Biomasa Forestal en Andalucía. Available at: http://www.juntadeandalucia.es/medioambiente/bioforan/ Last access: February 2016.

Dobson, M.C., Ulaby, F.T., LeToan, T., Beaudoin, A., Kasischke, E.S., 1992. Depedence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 412-415. http://dx.doi.org/10.1109/36.134090

Earth Observation Research Center (EORC), Data Distribution Service, PALSAR Calibration Factor Updated. 2009. Available at: http://www.eorc.jaxa.jp/en/about/distribution/info/alos/20090109en_3.html Last access: February 2016

Frost, V.S., Stiles, J.A., Schanmugan, K.S., Holzman, J.C. 1982. A model for radar imagesand its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, 157-166. http://dx.doi.org/10.1109/TPAMI.1982.4767223

Hamdan, O., Mohd Hasmadi, I., Khali Aziz, H., Norizah, K., Helmi Zulhaidi, M.S. 2015. L-band saturation level for aboveground biomass of dipterocarp forests in peninsular Malaysia. Journal of Tropical Forest Science, 27(3), 388-399.

Hussin, Y.A., Reich, R.M. Hoffer, R.M. 1991. Estimating slash pine biomass using radar backscatter. IEEE Transactions on Geoscience and Remote Sensing, 29(3): 427-431. http://dx.doi.org/10.1109/36.79433

Imhoff, M.L. 1995. Radar Backscatter and Biomass Saturation: Ramifications for Global Biomass Inventory. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 511-518. http://dx.doi.org/10.1109/36.377953

Kasischke, E.S., Melack, J. M., Dobson, M.C. 1997. The use of imaging radars for ecological applications - a review. Remote Sensing and Environment, 59(2): 141-156. http://dx.doi.org/10.1016/S0034-4257(96)00148-4

Leckie, D.G., Ranson, K.J. 1998. Forestry applications using imaging radar, 3rd ed. Wiley: New York.

Lee, J.S. 1980. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(2), 165-168. http://dx.doi.org/10.1109/TPAMI.1980.4766994

Le Toan, T., Beaudoin, A., Riom, J., Guyon, D. 1992. Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 403-411. http://dx.doi.org/10.1109/36.134089

Le Toan, T. 2015. The BIOMASS Mission: How it works and what it measures. 1st BIOMASS Science Workshop, 27-30.

Lucas, R., Moghaddam, M., Cronin N. 2004. Microwave scattering from mixed-species forest, Queensland, Australia. IEEE Transactions on Geoscience and Remote Sensing, 42(10), 2142-2159. http://dx.doi.org/10.1109/TGRS.2004.834633

Polglase, P.J., Adams, M.A., Attiwill, P.M. 1994. Measurement and modelling of carbon storage in a chronosequence of mountain ash forest: implications for regional and global carbon budgets. En: Report of State Electricity Commission of Victoria. Melbourne, Australia, 50-56.

Richards, J. A. 1990. Radar backscatter modelling of forests: a review of current trends. International Journal of Remote Sensing, 11(7), 1299-1312. http://dx.doi.org/10.1080/01431169008955094

Sabaté, S., Gracia, C.A., Vayreda, J., Ibáñez, J. 2005. Differences among species in aboveground biomass expansion factors in Mediterranean forests. En: Mäkipää R, et al. (eds). Effective exploitation of existing information related to BEF ensured and gaps of knowledge on BEFs of different tree species by regions identified and reported. CarboInvent. Final report for Deliverable 2.2. Document No. WP2-D2.2-Metla.

Santoro, M., Fransson, J.E.S., Eriksson L.E.B., Magnusson, M., Ulander, L.M.H., Olsson, H., Krantz, A. 2008. Investigations on forestry applications in Sweden using ALOS PALSAR. Proceedings of ALOS PI 2008 Symposium, 3-7.

Santoro, M., Fransson, J.E.S., Eriksson, L.E.B., Magnusson, M., Ulander, L.M.H., Olsson, H. 2009. Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4001-4019. http://dx.doi.org/10.1109/TGRS.2009.2023906

Shimada, M., Isoguchi, O., Tadono, T., Isono, K., 2009. PALSAR Radiometric and Geometric Calibration. IEEE Transactions on Geoscience and Remote Sensing, Vol.47, no.12, pp.3915-3932.

Suzuki, R., Kim, Y., Ishii, R. 2013. Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska. Polar Science, 7(2), 100-112. http://dx.doi.org/10.1016/j.polar.2013.03.001

Tanase, M.A., Panciera, R., Lowell, K., Tian, S., García-Martín, A., Walker, J.P. 2014. Sensitivity of L-Band Radar Backscatter to Forest Biomass in Semiarid Environments: A Comparative Analysis of Parametric and Nonparametric Models. IEEE Transactions on Geoscience and Remote Sensing, 52(8), 4671-4685. http://dx.doi.org/10.1109/TGRS.2013.2283521

Treuhaft, R.N., Siqueira, P.R. 2004. The calculated performance of forest structure and biomass estimates from interferometric radar. Waves Random Media, 14(2), S345-S358. http://dx.doi.org/10.1088/0959-7174/14/2/013

Trevett, J.W. 1986. Imaging radar for Resources surveys, 1st ed. Chapman and Hall: London, UK. http://dx.doi.org/10.1007/978-94-009-4089-5

Ulaby, F.T., Dobson, M.C. 1989. Handbook of Radar Scattering Statistics for Terrain. Artech House:Norwood, MA, USA.

Vilén, T., Meyer, J., Thürig, E., Lindner, M., Green, T. 2005. CarboInvent: Multi-source inventory methods for quantifying carbon stocks and stock changes in European forests, Doc. No.: WP6-D6.1_D6.2-EFI; WP 6 Deliverable 6.1 and 6.2. European Forest Institute.

Zianis, D., Muukkoonen, P. Mäkipää, R., Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs,4, 63.

Abstract Views

2658
Metrics Loading ...

Metrics powered by PLOS ALM




 

This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet