Combined use of LIDAR and hyperspectral measurements for remote sensing of fluorescence and vertical profile of canopies
DOI:
https://doi.org/10.4995/raet.2015.3982Keywords:
Laser-induced fluorescence, Sun-induced fluorescence, Lidar, Chlorophyll fluorescence, Fluorescence yield, Vegetation stress, Canopy profile, Lidar waveform, Gross primary productionAbstract
We report the development of a new LIDAR system (LASVEG) for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laser-induced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will allow the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the fluorescence LIDAR development are discussed and expected performances are presented.
Downloads
References
Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., Hall, J.S., van Breugel, M. 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia, 168(4), 1147-1160. http://dx.doi.org/10.1007/s00442-011-2165-z
Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J.L., Leroy, M. 2007. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION - Part 1: Principles of the algorithm. Remote Sensing of Environment, 110(3), 275-286. http://dx.doi.org/10.1016/j.rse.2007.02.018
Berk, A., Bernstein, L.S., Robertson, D.C. 1987. MODTRAN: A moderate resolution model for LOWTRAN, Burlington, MA, USA: Spectral Sci., Inc.
Cerovic, Z.G., Goulas, Y., Gorbunov, M., Briantais, J.M., Camenen, L., Moya, I. 1996. Fluorosensing of water stress in plants. Diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a t-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet and Kalanchoë. Remote Sensing of Environment, 58(3), 311-321. http://dx.doi.org/10.1016/S0034-4257(96)00076-4
Damm, A., Elbers, J., Erler, A., Gioli, B., Hamdi, K., Hutjes, R., Kosvancova, M., Meroni, M., Miglietta F., Moersch, A., Moreno, J., Schickling, A., Sonnenschein, R., Udelhoven, T., Van Der Linden, S., Hostert, P., Rascher, U. 2010. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biology, 16(1), 171-186. http://dx.doi.org/10.1111/j.1365-2486.2009.01908.x
Dash, J., Curran, P.J. 2007. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Advances in Space Research, 39(1), 100-104. http://dx.doi.org/10.1016/j.asr.2006.02.034
Daumard, F., Goulas, Y., Ounis, A., Pedros, R., Moya, I. 2015. Measurement and Correction of Atmospheric Effects at Different Altitudes for Remote Sensing of Sun-Induced Fluorescence in Oxygen Absorption Bands. IEEE Transactions on Geoscience and Remote Sensing, 53(9), 5180-5196. http://dx.doi.org/10.1109/TGRS.2015.2418992
Flexas, J., Escalona, J.M., Evain, S., Gulias, J., Moya, I., Osmond, C.B., Medrano, H. 2002. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum, 114(2), 231-240. http://dx.doi.org/10.1034/j.1399-3054.2002.1140209.x
Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, G.C., Butz, A., Jung, M., Kuze, A., Yokota, T. 2011. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38(17), L17706. http://dx.doi.org/10.1029/2011GL048738
Gamon, J.A., Penuelas, J., Field, C.B. 1992. A narrowwaveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35-44. http://dx.doi.org/10.1016/0034-4257(92)90059-S
Glenn, E.P., Huete, A.R., Nagler, P.L., Nelson, S.G. 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors, 8, 2136-2160. ttp://dx.doi.org/10.3390/s8042136
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., Huete, A.R., ZarcoTejada, P., Lee, J.E., Moran, M.S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M., Griffis, T.J. 2014. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences, 111(14), E1327-E1333. http://dx.doi.org/10.1073/pnas.1320008111
Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337-352. http://dx.doi.org/10.1016/j.rse.2003.12.013
Krause, G.H., Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313-349. http://dx.doi.org/10.1146/annurev.pp.42.060191.001525
Lopez, M.L., Moya, I., Balbontin, C., Campos, I., Calera, A., Ounis, A., et al. 2011. In-the-field water stress detection at plant scale using Laser Induced Fluorescence. Paper presented at the European Geosciences Union General Assembly, Vienna, Austria. 03-08 April 2011.
Mascaro, J., Detto, M., Asner, G.P., Muller-Landau, H.C. 2011. Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sensing of Environment, 115(12), 3770-3774. http://dx.doi.org/10.1016/j.rse.2011.07.019
Maxwell, K., Johnson, G.N. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51(345), 659-668. http://dx.doi.org/10.1093/jexbot/51.345.659
Miller, J., Berger, M., Goulas, Y., Jacquemoud, S., Louis, J., Mohammed, G., et al. 2005. Development of a Vegetation Fluorescence Canopy Model – Final Report: ESTEC Contract N0 16365/02/NL/FF.
Monteith, J.L. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3), 747-766. http://dx.doi.org/10.2307/2401901
Moya, I., Daumard, F., Moise, N., Ounis, A., Goulas, Y. 2006. First airborne multiwavelength passive chlorophyll fluorescence measurements over La Mancha (Spain) fields. Paper presented at the 2nd International Symposium on Recent Advances in Quantitative Remote Sensing: RAQRS’II, 25-29th September 2006, Torrent (Valencia)-Spain.
Papageorgiou, G., & Govindjee (eds). 2004. Chlorophyll a fluorescence. A signature of photosynthesis. Dordrecht, The Netherlands: Springer.
Rossini, M., Meroni, M., Migliavacca, M., Manca, G., Cogliati, S., Busetto, L., Picchi, V., Cescatti, A., Seufert, G., Colombo, R. 2010. High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field. Agricultural and Forest Meteorology, 150(9) 1283-1296. http://dx.doi.org/10.1016/j.agrformet.2010.05.011
Schreiber, U., Bilger, W., Klughammer, C., Neubauer, C. 1988. Application of the PAM fluorimeter in stress detection. In H.K. Lichtenthaler (Ed.), Applications of Chlorophyll Fluorescence (pp. 151-155). Netherlands: Kluwer Academic Publishers.
Schreiber, U., Schliwa, U. 1987. A solid-state, portable instrument for measurement of chlorophyll luminescence induction in plants. Photosynthesis Research, 11(2), 173-182. http://dx.doi.org/10.1007/BF00018275
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International